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Abstract

The decision making (DM) problem is of great practical value in many areas
of human activities. Most widely used DM methods are based on probabilistic ap-
proaches. The well-known Bayesian theorem for a conditional probability density
function (PDF) is a background for such techniques. It is needed due to some uncer-
tainty in many parameters entered in any model which describes the functioning of
many real systems or objects. Uncertainty in our knowledge might be expressed in
an alternative form. We offer to employ appropriate confidence intervals for model
parameters instead of a relevant PDF. Thus one can formulate a prior uncertainty
in model parameters by means of a set of linear constraints. The related cost or
goal function should be defined at a corresponding set of parameters. That leads
us to stating the problem in terms of operational research or mathematical linear
programming. It is more convenient to formulate such optimization problems for
discreet or Boolean variables. A review of relevant problem statements and numer-
ical techniques are presented as well as many examples.

Keywords: decision making, Bayesian theory, linear and integer programming,
optimal design

1 Introduction

Decision theory is a theory about decisions. The subject is not a very unified one. To
the contrary, there are many different ways to theorize about decisions, and there-
fore also many different research traditions. This chapter attempts to reflect some of
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the diversity of the subject. Its emphasis lies on the mathematical aspects of deci-
sion theory. Decision theory focuses on how we use our freedom. In the situations
treated by decision theorists, there are options to choose between, and we choose
in a non-random way. Our choices, in these situations, are goal-directed activities.
Hence, decision theory is concerned with goal-directed behaviour in the presence of
options. We do not decide continuously. In the history of almost any activity, there
are periods in which most of the decision-making is made, and other periods in
which most of the implementation takes place. Decision theory tries to throw light,
in various ways, on the former type of period. Decision makers divide the decision
process into the following five steps:

• Identification of the problem
• Obtaining necessary information
• Production of possible solutions
• Evaluation of such solutions
• Selection of a strategy for performance

The set of above issues is sequential in the sense that they divide decision pro-
cesses into parts that always come in the same order or sequence. This approach
might be criticized. Some empirical material indicates that the “stages” are per-
formed in parallel rather than in sequence. A more realistic model should allow the
various parts of the decision process to come in different order in different decisions.

2 Bayesian decision theory

Bayesian decision theory is based on the statistical inference in which evidence or
observations are used to update or to newly infer the probability that a hypothesis
may be true. The name “Bayesian” comes from the frequent use of Bayes’ theorem
in the inference process. Bayes’ theorem was derived from the work of the Reverend
Thomas Bayes. Bayesian inference uses aspects of the scientific method, which in-
volves collecting evidence that is meant to be consistent or inconsistent with a given
hypothesis. As evidence accumulates, the degree of belief in a hypothesis ought
to change. With enough evidence, it should become very high or very low. Thus,
proponents of Bayesian inference say that it can be used to discriminate between
conflicting hypotheses: hypotheses with very high support should be accepted as
true and those with very low support should be rejected as false. However, detrac-
tors say that this inference method may be biased due to initial beliefs that one needs
to hold before any evidence is ever collected. Bayesian inference uses a numerical
estimate of the degree of belief in a hypothesis before evidence has been observed
and calculates a numerical estimate of the degree of belief in the hypothesis after ev-
idence has been observed. Bayesian inference usually relies on degrees of belief, or
subjective probabilities, in the induction process and does not necessarily claim to
provide an objective method of induction. Nonetheless, some Bayesian statisticians
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believe probabilities can have an objective value and therefore Bayesian inference
can provide an objective method of induction.

P(H/E) =
P(E/H)P(H)

P(E)
(1)

where:

• H represents a specific hypothesis, which may or may not be some null hypothe-
sis.

• P(H) is called the prior probability of H that was inferred before new evidence,
E, became available.

• P(E/H) is called the conditional probability of seeing the evidence E if the hy-
pothesis H happens to be true. It is also called a likelihood function when it is
considered as a function of H for fixed E.

• P(E) is called the marginal probability of E: the a priori probability of witnessing
the new evidence E under all possible hypotheses. It can be calculated as the
sum of the product of all probabilities of any complete set of mutually exclusive
hypotheses and corresponding conditional probabilities:

P(E) = ∑
i

P(E/Hi)P(Hi). (2)

• P(H/E) is called the posterior probability of H given E.

The factor P(E/H) / P(E) represents the impact that the evidence has on the be-
lief in the hypothesis. If it is likely that the evidence E would be observed when
the hypothesis under consideration is true, but unlikely that E would have been the
outcome of the observation, then this factor will be large. Multiplying the prior prob-
ability of the hypothesis by this factor would result in a larger posterior probability
of the hypothesis given the evidence. Conversely, if it is unlikely that the evidence
E would be observed if the hypothesis under consideration is true, but a priori likely
that E would be observed, then the factor would reduce the posterior probability for
H. Under Bayesian inference, Bayes’ theorem therefore measures how much new
evidence should alter a belief in a hypothesis.

Bayesian statisticians argue that even when people have very different prior sub-
jective probabilities, new evidence from repeated observations will tend to bring
their posterior subjective probabilities closer together. However, others argue that
when people hold widely different prior subjective probabilities their posterior sub-
jective probabilities may never converge even with repeated collection of evidence.
These critics argue that worldviews, which are completely different initially, can
remain completely different over time despite a large accumulation of evidence.

Thus, one applies Bayes theorem (see (1) and (2)), multiplying the prior by the
likelihood function and then normalizing, to get the posterior probability distribu-
tion, which is the conditional distribution of the uncertain quantity given the data.
A prior is often the purely subjective assessment of an experienced expert. Some
will choose a conjugate prior when they can, to make calculation of the posterior
distribution easier. In decision theory, a Bayes estimator is an estimator or decision
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rule that maximizes the posterior expected value of a utility function or minimizes
the posterior expected value of a loss function (also called posterior expected loss).
Unfortunately, there are many decision making examples where Bayes theory fails
due to difficulties in determining the prior probability distribution. Standard sta-
tistical practice ignores model uncertainty. Data analysts typically select a model
from some class of models and then proceed as if the selected model had gener-
ated the data. This approach ignores the uncertainty in model selection, leading to
over-confident inferences and decisions that are more risky than one thinks they are.
Bayesian model averaging (BMA) provides a coherent mechanism for accounting
for this model uncertainty. Several methods for implementing BMA have recently
emerged (George, 1999, Raftery, 1996 a, b). Nonetheless, the BMA approach cannot
solve the decision problem entirely (Weakliem, 1999).

3 Decision under severe uncertainty

It is common to make uncertain decisions (Ben-Haim, 2001). What can be done to
make good (or at least the best possible) decisions under conditions of uncertainty?
Info-gap robustness analysis evaluates each feasible decision by asking: how much
deviation from an estimate of a parameter value, function, or set, is permitted and yet
”guarantee” acceptable performance? In everyday terms, the ”robustness” of a de-
cision is set by the size of deviation from an estimate that still leads to performance
within requirements when using that decision. It is sometimes difficult to judge how
much robustness is needed or sufficient. However, according to info-gap theory, the
ranking of feasible decisions in terms of their degree of robustness is independent
of such judgments. To this end, the following questions must be addressed:

• What are the characteristics of decision problems that are subject to severe un-
certainty?

• What difficulties arise in the modelling and solution of such problems?
• What type of robustness is sought?
• How does info-gap theory address these issues?

In what way is info-gap decision theory similar to and/or different from other
theories for decision under uncertainty? Two important points need to be elucidated
in this regard at the outset:

• Considering the severity of the uncertainty that info-gap was designed to tackle,
it is essential to clarify the difficulties posed by severe uncertainty.

• Since info-gap is a non-probabilistic method that seeks to maximize robust-
ness to uncertainty, it is imperative to compare it to the single most important
“non-probabilistic” model in classical decision theory, namely Wald’s maximin
paradigm.

The maximin rule tells us to rank alternatives by their worst possible outcomes:
we are to adopt the alternative the worst outcome of which is superior to the worst
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outcome of the others. After all, this paradigm has dominated the scene in classical
decision theory for well over sixty years. So, first let us clarify the assumptions that
are implied by severe uncertainty:

1. A parameter λ , whose true value is subject to severe uncertainty.
2. A region of uncertainty ∆ , where the true value of λ lies.
3. An estimate λ̃ of the true value of λ .

Two remarks should be made with account to above assumption. First, The re-
gion of uncertainty is relatively large. Second, the estimate is a poor approximation
of the true value of λ . Info-gap decision theory is radically different from all current
theories of decision under uncertainty. The difference originates in the modeling of
uncertainty as an information gap rather than as a probability. In general, info-gap’s
robustness model is a mathematical representation of a local worst-case analysis
in the neighborhood of a given estimate of the true value of the parameter of in-
terest. Under severe uncertainty the estimate is assumed to be a poor indication of
the true value of the parameter and is likely to be substantially wrong. The funda-
mental question therefore is: given the severity of the uncertainty, the local nature
of the analysis and the poor quality of the estimate, how meaningful and useful
are the results generated by the analysis, and how sound is the methodology as a
whole? The robust optimization literature (see Ben-Tal et al, 2006; Kouvelis, 1997)
provides methods and techniques that take a global approach to robustness anal-
ysis. These methods directly address decision under severe uncertainty, and have
been used for this purpose for more than thirty years. Wald’s Maximin model is
the main instrument used by these methods. The principal difference between the
Maximin model employed by info-gap and the various Maximin models employed
by robust optimization methods is in the manner in which the total region of un-
certainty is incorporated in the robustness model. Info-gap takes a local approach
that concentrates on the immediate neighborhood of the estimate. In sharp contrast,
robust optimization methods set out to incorporate in the analysis the entire region
of uncertainty, or at least an adequate representation thereof. In fact, some of these
methods do not even use an estimate. The info-gap’s robustness model is an instance
of the generic Maximin model. Therefore, it is instructive to examine the mathemat-
ical programming (MP) formats of these generic models (Ecker and Kupferschmid,
1988; Thie 1988; Kouvelis and Yu, 1997).

4 Linear Programming

A Linear Programming (LP) problem is a special case of a Mathematical Program-
ming problem (Dantzig, 1949; Kantorovich, 1966). From an analytical perspective,
a mathematical program tries to identify an extreme (i.e., minimum or maximum)
point of a function f (x1,x2, ...,xn) , which furthermore satisfies a set of constraints,
e.g., g(x1,x2, ...,xn) ≥ b. Linear programming is the specialization of mathematical
programming to the case where both function f, to be called the objective function,
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and the problem constraints g are linear. From an applications perspective, mathe-
matical (and therefore, linear) programming is an optimization tool, which allows
the rationalization of many managerial and/or technological decisions required by
contemporary techno-socio-economic applications. An important factor for the ap-
plicability of the mathematical programming methodology in various application
contexts is the computational tractability of the resulting analytical models. Under
the advent of modern computing technology, this tractability requirement translates
to the existence of effective and efficient algorithmic procedures able to provide a
systematic and fast solution to these models. For Linear Programming problems, the
Simplex algorithm provides a powerful computational tool, able to provide fast so-
lutions to very large-scale applications, sometimes including hundreds of thousands
of variables (i.e., decision factors). In fact, the Simplex algorithm was one of the
first Mathematical Programming algorithms to be developed (Dantzig, 1949), and
its subsequent successful implementation in a series of applications significantly
contributed to the acceptance of the broader field of Operations Research as a sci-
entific approach to decision making.

4.1 Illustrative Example

Let us consider a simple example of the MP problem formulation (Kantorovich,
1966). Assume that a company produces two types of products P1and P2. Produc-
tion of these products is supported by two workstations W1and W2 , with each
station visited by both product types. If workstation W1 is dedicated completely to
the production of product type P1 , it can process 40 units per day, while if it is
dedicated to the production of product P2, it can process 60 units per day. Similarly,
workstation W2 can produce daily 50 units of product P1 and 50 units of product
P2, assuming that it is dedicated completely to the production of the corresponding
product. If the company’s profit by disposing one unit of product P1is $200 and that
of disposing one unit of P2is $400, and assuming that the company can dispose its
entire production, how many units of each product should the company produce on
a daily basis to maximize its profit?

First notice that this problem is an optimization problem. Our objective is to
maximize the company’s profit, which under the problem assumptions is equivalent
to maximizing the company’s daily profit. Furthermore, we are going to maximize
the company profit by adjusting the levels of the daily production for the two items
P1 and P2. Therefore, these daily production levels are the control/decision factors,
the values of which we are asked to determine. In the analytical formulation of
the problem the role of these factors is captured by modeling them as the problem
decision variables:

• X1= number of units of product P1 to be produced daily
• X2= number of units of product P2 to be produced daily
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In view of the above discussion, the problem objective can be expressed analyti-
cally as:

f (X1,X2) = 200X1 +400X2. (3)

Equation (3) will be called the objective function of the problem, and the coef-
ficients 200 and 400, which multiply the decision variables in it, will be called the
objective function coefficients.

Furthermore, any decision regarding the daily production levels for items P1 and
P2, in order to be realizable in the company’s operational context, must observe the
production capacity of the two workstations W1 and W2. Hence, our next step in
the problem formulation seeks to introduce these technological constraints. Let’s
focus first on the constraint, which expresses the finite production capacity of work-
station W1. Regarding this constraint, we know that one day’s work dedicated to
the production of item P1 can result in 40 units of that item, while the same pe-
riod dedicated to the production of item P2 will provide 60 units of it. Assuming
that production of one unit of product type Pi(i = 1,2), requires a constant amount
of processing time T1i(i = 1,2) at workstation W1, it follows that:T11 = 1

40 and
T12 = 1

60 . Under the further assumption that the combined production of both items
has no side-effects, i.e., does not impose any additional requirements for production
capacity of the workstation (e.g., zero set-up times), the total capacity (in terms of
time length) required for producing X1 units of product P1 and X2 units of product
P2 is equal to 1

40 X1 + 1
60 X2. Hence, the technological constraint imposing the con-

dition that our total daily processing requirements for workstation W1 should not
exceed its production capacity, is analytically expressed by:

1
40

X1 +
1
60

X2 ≤ 1. (4)

Notice that in equation (4) time is measured in days.
Following the same line of reasoning (and under similar assumptions), the con-

straint expressing the finite processing capacity of workstation W2is given by:

1
50

X1 +
1
50

X2 ≤ 1. (5)

Constraints (4) and (5) are known as the technological constraints of the problem.
In particular, the coefficients of the variables Xi(i = 1,2), 1

Ti j
(i, j = 1,2) , are known

as the technological coefficients of the problem formulation, while the values on
the right-hand-side of the two inequalities define the right-hand side vector of the
constraints. Finally, to the above constraints we must add the requirement that any
permissible value for variables Xi(i = 1,2) must be nonnegative since these values
express production levels. These constraints are known as the variable sign restric-
tions. Combining equations (3) to (5), the analytical formulation of our problem is
as follows:

max{ f (X1,X2)} = max{200X1 +400X2} (6)
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1
40

X1 +
1

60
X2 ≤ 1

1
50

X1 +
1

50
X2 ≤ 1

Xi ≥ 0(i = 1,2).

4.2 The general “Linear Programming” formulation

Generalizing formulation (6), the general form for a Linear Programming problem
is as follows (Gass, 1958):

Linear Objective Function (LOF) maximization:

max{ f (X1,X2, ...,Xn)} = max{∑ciXi} (7)

under Linear Constraints (LC):

∑
j

ai jX j

≤
or
=
or
≥

bi(i = 1, ...,m). (8)

The LC (8) might be used in important particular cases, when variables signs are
prescribed:

(X j ≥ 0),or(X j ≤ 0). (9)

We conclude our discussion on the general LP formulation by formally defining
the solution search space and optimality. Specifically, we shall define as the feasible
region of the LP of Equations (6) to (8), the entire set of vectors X = (X1, ...,Xn)T

that satisfy the LC of (8) and the sign restrictions of (9). An optimal solution to
the problem is any feasible vector that further satisfies the optimality requirements
expressed by (7)-(9). Introducing integrality requirements for some of the variables
in an LP formulation turns the problem to one belonging in the class of (Mixed)
Integer Programming (MIP) or Integer Programming (IP).

4.3 Graphical LP’s interpretation

In this section, we consider a solution approach for LP problems, which is based
on a geometrical representation of the feasible region and the objective function
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(Gass, 1958). In particular, the space to be considered is the n-dimensional space
with each dimension defined by one of the LP variables (X1,X2) . Thus we present
an illustration for the 2-variable case.

We start our investigation regarding the geometrical representation of 2-var linear
constraints by considering first constraints of the equality type, i.e.,

a1X1 +a2X2 = b. (10)

Assuming a2 6= 0, this equation corresponds to a straight line with slope s = −a1
a2

and intercept d = b
a2

. In the special case a2=0 the solution space (locus) of equation
(10) is a straight line perpendicular to the X1-axis, intersecting it at the point ( b

a1
;0).

Notice that the presence of an equality constraint restricts the dimensionality of the
feasible solution space by one degree of freedom, i.e., it turns it from a planar area
to a line segment.

Consider the inequality constraint:

a1X1 +a2X2

≤
or
=
or
≥

b. (11)

The solution space of this constraint is one of the closed half-planes defined by
equation (11). To show this, let us consider a point (X1,X2) , which satisfies equation
(11) as equality, and another point (X

′
1,X

′
2) for which equation (11) is also valid. For

any such pair of points, it holds that:

a1(X
′
1 −X1)+a2(X

′
2 −X2)

≤
or
=
or
≥

0. (12)

Let us consider the left side of (12) as the inner (dot) product of the two vectors
a =(a1,a2)T and ∆X =((X

′
1−X1),(X

′
2−X2))T . It is equal to

∣∣∣∣∣∣∆X
∣∣∣∣∣∣∣∣∣∣∣∣a∣∣∣∣∣∣cos(∆X,a).

In this case a line a1X1 +a2X2 = b can be defined by the point (X1,X2) and the set of
points (X

′
1,X

′
2) such that vector a is at right angles with vector ∆X . Furthermore, the

set of points that satisfy the inequality parts of equation (12) have the vector forming
an acute (obtuse) angle with vector a, and therefore they are “above” (“below”) the
line. Hence, the set of points satisfying each of the two inequalities implied by equa-
tion (11) is given by one of the two half-planes the boundary of which is defined by
the corresponding equality constraint. Figure 1 summarizes the above discussion.

An easy way to determine the half-plane depicting the solution space of a lin-
ear inequality is to draw the line depicting the solution space of the corresponding
equality constraint and then test whether the point (0,0) satisfies the inequality. In
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Fig. 1 Half-planes: the feasible region of a linear inequality

case of a positive answer, the solution space is the half-space containing the origin,
otherwise, it is the other one.

From the above discussion, it follows that the feasible region for the prototype
LP of equation (6) is the shaded area in the following figure:

Fig. 2 The feasible region of the example LP considered in 3.1.

The next step is a maximization (minimization) of the objective function. The
most typical way to represent a two-variable function c1X1 + c2X2 is to perceive it
as a surface in an (orthogonal) three-dimensional space, where two of the dimen-
sions correspond to the independent variables X1 and X2 , while the third dimension
provides the function value for any pair (X1,X2). However, in the context of our
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discussion, we are interested in expressing the information contained in the two-var
LP objective function c1X1 + c2X2 in the Cartesian plane defined by the two inde-
pendent variables X1 and X2. For this purpose, we shall use the concept of contour
plots. Contour plots depict a function by identifying the set of points (X1,X2) that
correspond to a constant value of the function (c1X1 +c2X2) = a, for any given range
of a’s. The plot obtained for any fixed value of a is a contour of the function. Study-
ing the structure of a contour is expected to identify some patterns that essentially
depict some useful properties of the function. In the case of LP’s, the linearity of the
objective function implies that any contour of it will be of the type:

(c1X1 + c2X2) = a (13)

i.e., a straight line. For a maximization (minimization) problem, this line will be
called an isoprofit (isocost) line. Assuming that c2 6= 0, equation (13) can be rewrit-
ten as:

X2 =−c1

c2
X1 +

a
c2

which implies that by changing the value of a , the resulting isoprofit/isocost lines
have constant slope and varying intercept, i.e, they are parallel to each other (which
makes sense, since by the definition of this concept, isoprofit/isocost lines cannot in-
tersect). Hence, if we continuously increase a from some initial value ao, the corre-
sponding isoprofit lines can be obtained by “sliding” the isprofit line corresponding
to (c1X1 + c2X2) = ao parallel to itself, in the direction of increasing or decreasing
intercepts, depending on whether c2 is positive or negative. The “ sliding motion”
suggests a way for identifying the optimal values for, let’s say, a max LP problem.
The underlying idea is to keep “sliding” the isoprofit line(c1X1 + c2X2) = ao in the
direction of increasing a’s until we cross the boundary of the LP feasible region. The
implementation of this idea on the LP of equation (6) (see also fig.2) is depicted in
figure 3.

From fig. 3, it follows that the optimal daily production levels for the protoype
LP are given by the coordinates of the point corresponding to the intersection of
line 1

50 X1 + 1
50 X2 = 0 with the X2-axis, i.e., Xopt

1 = 0,Xopt
2 = 50. The maximal daily

profit is 200∗0 + 400 ∗ 50 = 20,000$. Notice that the optimal point is one of the
“corner” points of the feasible region depicted in Figure 3. Can you argue that for
the geometry of the feasible region for 2-var LP’s described above, if there is a
bounded optimal solution, then there will be one which corresponds to one of the
corner points? (This argument is developed for the broader context of n-var LP’s in
the next section.).

There are two fail options related to LP problem solution. First is absence of any
solution, when the feasible region is empty. Consider again the original example
(6), modified by the additional requirements (imposed by the company’s marketing
department) that the daily production of product X1 must be at least 30 units, and
that of product X2 should exceed 20 units. These requirements introduce two new
constraints into the problem formulation, i.e., X1 ≥ 30,X2 ≥ 20 . Attempting to
plot the feasible region for this new problem, we get figure 4, which indicates that



12 Oleg Pokrovsky

Fig. 3 Graphical solution of the example LP (6)

there are no points in the (X1,X2)-plane that satisfy all constraints, and therefore our
problem is infeasible (over-constrained).

Fig. 4 An infeasible LP
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A second particular option is an unbounded solution. In the LP’s considered
above, the feasible region (if not empty) was a bounded area of the plane. For this
kind of problems it is obvious that all values of the LP objective function (and
therefore the optimal) are bounded. Consider however the following modified LP
problem:

max{2X1 −X2}

under constraints:

X1 −X2 < 1

2X1 +X2 > 6

X1 ≥ 0,X2 ≥ 0.

The feasible region and the direction of improvement for the isoprofit lines for
this problem are given in figure 5. It is easy to see that the feasible region of this
problem is unbounded, and furthermore, the orientation of the isoprofit lines is such
that no matter how far we “slide” these lines in the direction of increasing the ob-
jective function, they will always share some points with the feasible region. There-
fore, this is an example of a (2-var) LP whose objective function can take arbitrarily
large values. Such an LP is characterized as unbounded. Notice, however, that even
though an unbounded feasible region is a necessary condition for an LP to be un-
bounded, it is not sufficient; to convince yourself, try to graphically identify the
optimal solution for the above LP in the case that the objective function is changed
to:

max{2X1 −X2} =−X2.

Summarizing the above discussion, we have shown that a 2-var LP can either:

• have a unique optimal solution which corresponds to a “corner” point of the
feasible region, or

• have many optimal solutions that correspond to an entire “edge” of the feasible
region, or

• be unbounded, or be infeasible.

5 Integer Programming

The use of integer variables in production when only integral quantities can be
produced is the most obvious use of integer programs (Gomori, 1963; Korbut and
Finkelstein, 1969). In this section, we will look at some less obvious ones. The text
also goes through a number of them (some are repeated here).
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Fig. 5 An unbounded LP

5.1 Relationship to linear programming

Given is an Integer Program (IP):

max{cT ·x}

subject to constraints:

A ·x = b; x ≥ 0.

Since (LP) is less constrained than (IP), the following are immediate:
If (IP) is a minimization, the optimal objective value for (LP) is less than or equal

to the optimal objective for (IP).
If (IP) is a maximization, the optimal objective value for (LP) is greater than or

equal to that of (IP).
If (LP) is infeasible, then so is (IP).
If (LP) is optimized by integer variables, then that solution is feasible and optimal

for (IP).
If the objective function coefficients are integer, then for minimization, the op-

timal objective for (IP) is greater than or equal to the “round up” of the optimal
objective for (LP).

For maximization, the optimal objective for (IP) is less than or equal to the “round
down” of the optimal objective for (LP). So solving (LP) does give some informa-
tion: it gives a bound on the optimal value and, if we are lucky, may give the optimal
solution to IP. We saw, however, that rounding the solution of LP will not in general
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give the optimal solution of (IP). In fact, for some problems it is difficult to round
and even get a feasible solution.

5.2 Capital budgeting

Let us consider one example of IP having a practical value (Gomori, 1963). Suppose
we wish to invest $14,000. We have identified four investment opportunities. Invest-
ment 1 requires an investment of $5,000 and has a present value (a time-discounted
value) of $8,000; investment 2 requires $7,000 and has a value of $11,000; invest-
ment 3 requires $4,000 and has a value of $6,000; and investment 4 requires $3,000
and has a value of $4,000. Into which investments should we place our money so as
to maximize our total present value?

Our first step is to decide on our variables. This can be much more difficult in
integer programming because there are very clever ways to use integrality restric-
tions. In this case, we will use a (0-1) variable xi(i = 1, ..,4) for each investment. If
xi is 1 then we will make investment i. If it is 0, we will not make the investment.
This leads to the 0-1 IP problem:

max{8x1 +11x2 +6x3 +4x4}

subject to constraints:

5x1 +7x2 +4x3 +3x4 ≤ 14

xi ∈ {0;1},(i = 1, ..,4).

Now, a straightforward decision suggests that investment 1 is the best choice.
In fact, ignoring integrality constraints, the optimal linear programming solution is
(x1 = 1;x2 = 1;x3 = 0.5;x4 = 0)for a objective value of $22,000. Unfortunately,
this solution is not integral. Rounding down to 0 gives a feasible solution with a
value of $19,000. There is a better integer solution (x1 = 0;x2 = 1;x3 = 1;x4 = 1),
however, for an objective value of $21,000. This example shows that rounding does
not necessarily give an optimal value.

5.3 Branch and Bound method

We discuss the branch and bound method by means of the simple IP example con-
sidered above. Our IP problem is as following:

max{z} = max{8x1 +11x2 +6x3 +4x4}

subject to constraints:
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5x1 +7x2 +4x3 +3x4 ≤ 14

xi ∈ {0;1},(i = 1, ..,4).

The linear relaxation solution is (x1 = 1;x2 = 1;x3 = 0.5;x4 = 0) with an objec-
tive function value of 22. We know that no integer solution will have value more
than 22. Unfortunately, since x3 is not integer, we do not have an integer solution
yet. We want to force it to be integral. To do so, we branch on x3, creating two new
problems. In one, we will add the constraint x3=0. In the other, we add the constraint
x3=1 . This is illustrated in figure 6.

Fig. 6 First branching

Note that any optimal solution to the overall problem must be feasible to one of
the subproblems. If we solve the LP by linear relaxations of the subproblems, we
get the following solutions:

x3 = 0; z = 21.65; f or x1 = 1,x2 = 1,x3 = 0,x4 = 0.667

x3 = 1; z = 21.85; f or x1 = 1,x2 = 0.714,x3 = 1,x4 = 0.

At this point we know that the optimal integer solution is no more than 21.85,
but we still do not have any feasible integer solution. So, we will take a subproblem
and branch on one of its variables. In general, we will choose the subproblem as
follows:

• We will choose an active subproblem, which so far only means one we have not
chosen before, and

• We will choose the subproblem with the highest solution value (for maximiza-
tion; lowest for minimization).
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In this case, we will choose the subproblem with x3=1, and branch on x2. After
solving the resulting subproblems, we have the branch and bound tree in figure 7.

Fig. 7 Second branching

The solutions are:

x3 = 1; z = 18; f or x1 = 1,x2 = 0,x3 = 1,x4 = 1

x3 = 1; z = 21.8; f or x1 = 0.6,x2 = 1,x3 = 1,x4 = 0.

We now have a feasible integer solution x3 = 1,x2 = 0 with objective value 18.
Furthermore, since the IP problem gave an integer solution, no further branching on
that problem is necessary. It is not active due to the integrality of solution. There are
still active subproblems that might give values more than 18. Using our rules, we
will branch again to get figure 8.

The solutions are:

x3 = 1,x1 = 0,x2 = 1; z = 21; f or x1 = 0,x2 = 1,x3 = 1,x4 = 1

x3 = 1,x1 = 1,x2 = 1; in f easible.
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Fig. 8 Third branching

Our best integer solution now has objective value 21. The subproblem that gen-
erates that is not active due to integrality of the solution. The other subproblem
generated is not active due to infeasibility. There is still a subproblem that is active.
It is the subproblem with solution value 21.65. By our “round-down” result, there is
no better solution for this subproblem than 21. But we already have a solution with
value 21. It is not useful to search for another such solution. We can fathom this
subproblem based on the above bounding argument and mark it not active. There
are no longer any active subproblems, so the optimal solution value is 21.

We have seen all parts of the branch and bound algorithm. The essence of the
algorithm is as follows:

• Solve the linear relaxation of the problem. If the solution is integral, then we
are done. Otherwise create two new subproblems by branching on a fractional
variable.
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• A subproblem is not active when any of the following occurs:

1. You used the subproblem to branch on,
2. All variables in the solution are integer,
3. The subproblem is infeasible,
4. You can fathom the subproblem by a bounding argument.

Choose an active subproblem and branch on a fractional variable. Repeat until
there are no active subproblems.

6 The Integer Programming application to decision making

We considered several illustrative examples of possible applications of LP and IP.
In this section we present several directions for practical application of IP in deci-
sion making. We will first discuss several examples of combinatorial optimization
problems and their formulation as integer programs. Then we will review a gen-
eral representation theory for integer programs that gives a formal measure of the
expressiveness of this algebraic approach.

6.1 Main application areas

Formulating decision problems as integer or mixed integer programs is often con-
sidered an art form. However, there are a few basic principles which can be used
by a novice to get started. As in all art forms though, principles can be violated to
creative effect. We list below a number of example formulations, the first few of
which may be viewed as principles for translating logical conditions into models.

6.1.1 Capacitated Plant Location Model

This model describes an optimal plan related to production and distribution of pro-
duced wares in accordance to demand sites. Let us introduce the following input
parameters:

i = {1, ...,m}- possible locations for plants
j = {1, ...,n}−demand sites
ki- a capacity of plant i; if opened
fi- fixed cost of opening plant i
ci j- per unit production cost at i plus transportation cost from plant i to site j
d j- a demand at location j
Our task is to choose the plant locations so as to minimize total cost and meet all

demands. This task might be formulated as the IP problem:
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min{∑
j
∑

i
ci jxi j +∑

i
fiyi}

subject to constraints:

∑
i

xi j ≥ d j;( j = 1, ...,n)

∑
j

xi j ≤ kiyi;(i = 1, ...,m)

xi j ≥ 0

yi = {0;1}.

to satisfy demands.
If the demand d j is less than the capacity ki for some “ij” combination, it is useful

to add the constraint

xi j ≤ d jyi

to improve the quality of the linear programming relaxation.

6.1.2 Traveling Salesman Problem

A recurring theme in IP is that the same decision problem can be formulated in sev-
eral different ways. Principles for sorting out the better ones have been the subject
of some discourse (Korbut and Finkelstein, 1969). We now illustrate this with the
well known traveling salesman problem. Given a complete directed graph with dis-
tance ci j of arc (i; j), we are to find the minimum length tour beginning at node 1
and visiting each node of this graph exactly once before returning to the start node
1. This task might be formulated as the IP problem:

min{∑
j
∑

i
ci jxi j}

subject to constraints:

∑
i

xi j = 1,( j = 1, ...,n)

∑
j

xi j = 1,(i = 1, ...,n)

∑
j
∑

i
ci jxi j ≥ 1

xi j = {0;1}.
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6.1.3 Covering and Packing Problems

A wide variety of location and scheduling problems can be formulated as set cover-
ing or set packing or set partitioning problems. The three different types of covering,
partitioning and packing problems can be succinctly stated as follows: Given

(a) a finite set of elements M = {1, ...,m}, and
(b) a family F of subsets of M with each member Fj = {1, ...,n} having a profit

(or cost) c j associated with it,
find a collection, S, of the members of F that maximizes the profit (or minimizes

the cost) while ensuring that every element of M is in:
(P1): at most one member of S (set packing problem)
(P2): at least one member of S (set covering problem)
(P3): exactly one member of S (set partitioning problem).
The three problems (P1), (P2) and (P3) can be formulated as integer linear pro-

grams as follows: Let A denotes the m*n matrix where

Ai j =
{

1, i f element“i′′belongstoFj
0, otherwise

}
.

The decision variables are x j( j = 1, ...,n), where

x j =
{

1, i f Fj ischosen
0, otherwise

}
.

The set packing problem is
(P1)

max{cT ·x}

subject to constraints:

A ·x ≤ em;

xi = {0;1}

where em is an m–dimensional column vector of “1”s. The set covering problem (P2)
is (P1) with less than or equal to constraints replaced by greater than or equal to con-
straints and the objective is to minimize rather than maximize. The set partitioning
problem (P3) is (P1) with the constraints written as equalities. The set partitioning
problem can be converted to a set packing problem or a set covering problem (see
(Korbut and Finkelstein, 1969)) using standard transformations. If the right hand
side vector em is replaced by a non-negative integer vector b, (P1) is referred to
as the generalized set packing problem. The airline crew scheduling problem is a
classic example of the set partitioning or the set covering problem. Each element of
M corresponds to a flight segment. Each subset Fj corresponds to an acceptable set
of flight segments of a crew. The problem is to cover, at minimum cost, each flight
segment exactly once. This is a set partitioning problem.
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6.2 Environmental application

6.2.1 Multi-User Consortium

Requirements for weather forecast products can vary significantly and are typically
oriented to the needs of specific user groups. Nonetheless, in many respects the
requirements are rather similar, such as a common need for information on basic
variables such as temperature, humidity, and precipitation (mean, maximum, mini-
mum). On other hand, it is hard to imagine that every user could provide their own
forecast product because of substantial costs of both inputs and model develop-
ment/maintenance. In the case of a specified forecast some additional observations
might be required to increase prescribed reliability or probability. Therefore, it is
more rational to select a set of a few forecast models and observing systems, which
respond to the correct extent to an optimal set of requirements generated by a multi-
user economical and mathematical model. A consortium of multi-users will get ben-
efits of mathematically optimal decisions under minimal costs. User investments in
a weather forecast system should be proportional to their expected benefits derived
from the early warning of short-term weather fluctuations or extreme events. Un-
der such circumstances a consortium of multi-users approach would be more likely
to derive benefits from the mathematically optimal decisions for minimum invest-
ment. The meteorological community is interested in such an approach in order to
reduce the number of observing programs and forecasting models (Pokrovsky, 2005;
Pokrovsky, 2006).

6.2.2 Elementary Statement of Problem

Let us assume that there are n users of climate forecasting data with their n benefits
of early warning: ci(i = 1, ...,n) (i=1,.., n). These users are interested to forecast m
specific meteorological events numerated as j=1,. . . m. The potential usefulness of
them varies and is described by the matrix of coefficients A = {ai j}. Each magnitude
ai j can be considered as the expense of the i-th user for the j-th meteorological event
delivered by some forecast model. The minimum expected efficiency for the i-th user
is bounded by bmin

i . Let us introduce the decision maker variable:

xi =
{

1, i f user“i′′adopts f orecast data
0, otherwise

}
.

Now we come to formulation of the optimization problem for { xi }:

max{∑
i

cixi} (14)

subject to constraints:
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∑
j

ai jx j ≥ bmin
i . (15)

Another interpretation of the coefficients and a more complex method to derive
them is possible. A generalization to the forecast multi-model case is evident.

Fig. 9 Ensemble Prediction System forecast relative values (usefullness) responded to multi-user
and multi-event case (Richardson, 2000)

6.2.3 Illustrative example

Let us consider multi-user decision making for many meteorological events. We
used the European Center for Medium Range Weather Forecasting (ECMWF) En-
semble Prediction System (EPS) forecast for the T850 (air temperature field at the
standard level of 850 mb) anomaly, Europe, Jan-Feb, 1998 (figure 9) (see details
in Richardson, 2000) with n=3 (number of users), m=4 (number of meteorological
events). The matrix of EPS forecast relative economic values are presented in table
1, the minimal efficiency for each user in table 2. In the case of equal importance of
users we came to the optimal solution xopt for (14) constrained by (15). This solu-
tion shows that the EPS forecasting system has prior importance for user “2”. The
least contribution is related to user “3” . Let us now enhance the a priori impor-
tance of user “3” by changing values of the target function (1) from c = (1,1,1)T
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to c = (0.5,0.5,1)T (table 3 and table 4). Even in this case user “3” remains at sec-
ond place after user “1”. It is interesting to note that the output for user “1” is its
insensitivity with account to a priory weights.

Table 1 Matrix of constraints A = {ai j}
Users (T¡-8K) (T¡-4K) (T¿+4K) (T¿+8K)

1 0.40 0.36 0 0
2 0.32 0.29 0.32 0.19
3 0.22 0.19 0.41 0.46

Table 2 Constraint vector of minimal efficiencies -bmin

Users bmin
i

1 0.1
2 0.2
3 0.3

Table 3 Optimal decision xopt in the case of priority user “3”:c = (0.5,0.5,1)T

Users xopt

1 2.26
2 0.36
3 1.99

Table 4 Optimal decision xopt in the case of priority user “3”:c = (0.5,0.5,1)T

Users xopt

1 2.26
2 0.36
3 1.99

7 Conclusion

An approach based on MP and IP finds a wide application area in many branches of
economical sciences. It can be used in decision making related to multidimensional
target functions constrained by many linear cost restrictions. This chapter indicates
that similar problems arising in many important practical areas might be efficiently
solved by the described approach.
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