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UXO SIGNAL MULTI SENSOR
DETECTION AND ESTIMATION ?

Chr. Kabakchiev1, V. Behar2, B. Vassileva2, D. Angelova2, K. Aleksiev2,
V. Kyovtorov3, I. Garvanov3, L. Doukovska3, and P. Daskalov4

Abstract

In this chapter, the original advanced algorithms for stepped-frequency
GPR imaging are considered. In stepped-frequency GPR, the range profile
formation is carried out by reconstruction of a wideband chirp by combining
a set of stepped-frequency chirp signals in the time domain. Using the Mod-
elsim simulator, it is shown that the processor VIRTEX II Pro is suitable for
implementation of this algorithm. A simple convolution algorithm for simula-
tion of stepped-frequency GPR images from multi-layered subsurface media
is described. Different approaches and algorithms for the basic GPR signal
and image processing are also considered in this chapter. These algorithms
are used for improving the image quality of underground objects, e.g. pipes.
It is shown that applying different filters (CFAR, Hough, Kalman,Particle) to
GPR image processing is a good decision in the sense of estimation accuracy,
probability of target detection and false alarm.
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1.1 Introduction (UXO Signals and a Multi Sensor
Approach)

Ground penetrating radar (GPR) is a well-known method of subsurface
exploration, which becomes extremely important for many environmental
applications such as unexploded ordnance (UXO) detection and geophysical
implementation [8]. It is well-known that most commercial GPR systems are
ultra-wideband pulse radars, in which range resolution is determined by the
bandwidth of the transmitted pulse. In these GPR, high range resolution is
achieved by transmitting very short pulses (or frequency-modulated pulses)
to obtain the required bandwidth. The frequency-stepped processing method
is a technique developed to overcome the power bandwidth limitations of
pulse radars.

In this chapter, GPR range profile formation is carried out by reconstruc-
tion of a wideband chirp by combining a set of stepped-frequency chirp signals
in the time domain. In order to optimize the parameters of the stepped-
frequency algorithm, a simple convolution-based algorithm for simulation of
echoes from multi-layered subsurface media has been developed. As a result, a
simple algorithm for simulation of frequency-stepped GPR images of multi-
layered media has been developed for parameter optimization of the basic
GPR signal and image processing [3, 5].

Different approaches and algorithms for the basic GPR signal and image
processing are considered and studied in order to improve the image quality
of underground objects and enable a recognition of objects and estimation of
their parameters. The results of the study described in [1, 2, 3, 4, 5, 6, 9, 10]
show that different approaches and algorithms for signal and image process-
ing generally lead to similar results. However, in different situations, there
can be alternatives. The results described here are obtained in cooperation
with MPS Ltd., the Institute of Information Technologies (IIT-BAS) and
the Institute for Parallel Processing (IPP-BAS), within the project “Digital
Ground Penetrating Radar” financially supported by the National Innovation
Fund (IF-02-85/2005-2007).

According to [8], underground objects of interest (e.g. pipes) are very
similar to unexploded ordnance (UXO). Therefore, our first conclusion is that
algorithms developed for GPR imaging and also for simulation of GPR images
can be successfully used in a system for detection of unexploded ordnance
(UXO).

Our second conclusion is that the multi-sensor unexploded ordnance detec-
tion system (MUDS) approach, usually leading to image improvement, and
the parameter estimation of unexploded ordnance (UXO) by using different
types of sensors can also be successfully applied to the same GPR sensors
with different algorithms for signal and image processing.
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1.2 Stepped-Frequency GPR imaging

The novelty of the results obtained in [5] is that two stepped-frequency
methods intended earlier for SAR applications are used for GPR imaging and
implemented on the base of RSPs of Analogy Devices. These methods con-
struct a synthetic high-resolution range profile by transmission of a burst of
narrowband LFM pulses with frequency bands separated by a fixed step. The
first of them constructs the wideband signal in the time domain as a combina-
tion of stepped-frequency narrowband chirps. The other method constructs
the wide frequency band of a wideband signal as a combination of the fre-
quency bands of stepped-frequency narrowband chirps. In that case, the range
resolution of a synthetic range profile produced by GPR depends on the whole
frequency range of the transmitted pulses. Starting from the requirements to
implement the stepped frequency processing on the base of RSP AD6624 and
AD6624A, four optimal parameter sets of the stepped-frequency processing
are proposed for its implementation in GPR. The criterion of optimization
was the minimal main lobe width and the minimal sidelobe peaks of the out-
put signal in a synthetic range profile of a homogeneous subsurface medium
containing a point target. The first variant of optimal parameter sets corre-
sponds to stepped-frequency GPR operating at 4.6 MHz to 38.2 MHz, which
generates synthetic range profiles with the range resolution of 1-2 m by trans-
mitting 14 narrowband chirps at each GPR position. The simulation results
show that the method of constructing a range profile in the time domain is
a more appropriate one because it produces the synthetic range profile with
lower noise.

1.2.1 Time-domain processing

The time-domain technique uses a sequence of stepped-frequency narrow-
band waveforms to produce a high-resolution synthetic range profile. In the
time domain, a long wideband chirp is constructed from M narrowband
chirps, each of duration Tp, separated in time by a repetition interval T . The
central frequencies of narrowband chirps are spaced by step ∆f . Since the
spectrum of each narrowband chirp is a fraction of a constructed wideband
chirp, all transmitted chirps should have the same frequency rate:

b1 = b2 = ... = bM = b = ∆f/Tp. (1.1)

The total bandwidth of a reconstructed wideband pulse is expressed as:

∆F = fmax − fmin = ∆fM. (1.2)

The central frequency of a transmitted narrowband chirp changes as:
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f0,m = fc +[m− (1−M)/2]/∆f, where fc = (fmin +fmax)/2, m = 1, ...,M.
(1.3)

The transmitted pulse belonging to the same burst can be described by:

vtx(t, m) = p(t)exp(j2πf0,mt), where p(t) = Arect(t/Tp)exp(jπbt2). (1.4)

The pulse reflected from a point scatterer located at distance d is a time-
delayed version of the transmitted pulse, i.e.:

vrx(t, m) = vtx(t− τ,m), m = 1, ...,M. (1.5)

The time delay in (1.5) is τ = 2d/V , and V is the velocity of electromag-
netic wave propagation. After quadrature demodulation, the received signal
at baseband is given by:

vbb(t, m) = vrx(t,m)exp(−j2πf0,mt) = p(t− τ)exp(−j2πf0,mτ). (1.6)

The construction of a synthetic range profile is performed by the following
processing steps:
• Upsampling. In order to avoid overlaps in the constructed spectrum, the

baseband signals have to be upsampled by a factor of M , where M is the
number of transmitted pulses.
• Frequency shift. The frequency shift of vbb(t, m) is performed in the time

domain as:

v
′

bb(t,m) = vbb(t,m)exp(j2πδfmt), where δfm = [m + (1−M)/2]∆f. (1.7)

• Phase correction. In order to avoid phase discontinuities in the wideband
signal, the phase of each narrowband pulse must be corrected by a phase-
correcting term, given by:

Φm = exp(jπbT 2
p [m + (1−M)/2]2). (1.8)

• Time shift. Before coherent summing each narrowband pulse is shifted in
the time domain by:

δtm = [m + (1−M)/2]/Tp. (1.9)

• Coherent summing. In the time domain, the wideband pulse v
′
(t) is formed

by coherently summing all the narrowband signals v
′

bb(t, m):

v
′
(t− τ) =

M−1∑
m=0

v
′

bb(t− δtm,m)Φm =

= Aexp[jπb(t− τ)2]
M−1∑
m=0

rect( t−τ−δtm

Tp
) = Aexp[jπb(t− τ)2]rect( t−τ

MTp
).

(1.10)
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The bandwidth and duration of the wideband chirp v
′
(t) are equal to M∆f

and MTp, respectively.
• Pulse compression. The final operation of constructing a synthetic range

profile is performed by filtering the constructed wideband pulse (10). The
filter impulse response is formed as the time-reversed conjugate of the wide-
band pulse, which is constructed from the transmitted narrowband pulses.
The signal at the compression filter output is given by:

r(t) =| FFT−1S(f)V (f) |, S(f) = FFT [s(t)], V (f) = FFT [v
′
(t− τ)]

(1.11)
where s(t) = conj[v

′
(t − τ)]W (t) under τ = 0, and W (t) is the weighting

function.

1.2.2 Simulation results

The block scheme for formation of a synthetic range profile using the
stepped frequency algorithm in the time domain is shown in Figure 1. Ac-
cording to the block scheme, the left channel for signal processing performs
echo-signals while the second channel forms the impulse response of a com-
pression filter. The examples of both, the wideband signal and the synthetic
range profile, constructed in the time domain by combining 14 narrowband
chirps are shown in Figure 2. Comparison analysis of synthetic range profiles

Fig. 1.1 Time-domain method Fig. 1.2 The Synthetic range profile

given in [5] shows that the two stepped-frequency processing methods are of
equivalent quality. However, it can be seen that the first method is a more
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appropriate one because it produces the synthetic range profile with lower
noise.

1.3 Simulation of Stepped-Frequency GPR images

At each transmission of a narrowband pulse, the EM wave radiated from a
transmitter antenna travels through the multi-layered media with a velocity
that depends on the electrical properties of layers. If the EM wave encounters
a boundary between two layers with different electrical properties, a part of
the EM energy is reflected or scattered back to the surface, while the rest
of the energy continues to travel downward. The radar receiver collects the
return signal that contains several returns from various layers of different
dielectric properties. There are a variety of methods for simulation of GPR
return signals. For a basic first-order simulation, a simple convolution-based
modeling technique can be used [6]. More accurate results, taking into account
the effects of scattering due to random surfaces and the three dimensional
antenna beam pattern can be obtained using advanced methods such as the
Finite Difference Time Domain (FDTD) method, at the cost of complexity
and computational time.

The novelty of the results obtained in [6] is that a sophisticated convolution-
based signal model is proposed for simulation of stepped-frequency GPR im-
ages. This model takes into account the basic radar parameters (energy poten-
tial, frequency, antenna beamwidth, number of transmitted chirps, wideband
of transmitted chirps and so on) and the basic parameters of a multi-layered
medium (number of layers, dielectric properties of layers, depth of layers, at-
tenuation) and, therefore, it results in more accurate simulation of stepped-
frequency GPR images. The simulation results show that this algorithm can
be successfully used for analysis and parameter optimization of the signal
processing algorithms in stepped-frequency GPR.

1.3.1 Echo signal simulation

The synthetic high-resolution range profile is constructed by transmission
of narrowband LFM pulses with frequency bands separated by a fixed step.
At the m-th transmission of a narrowband LFM pulse, the signal reflected
from a medium with L layers can be described as:

r(m, t) = r0(m, t) +
L∑

k=1

µm,k

√
SNRks(m, t) ∗ δk(m, t− τk) + N0(m, t)

(1.12)
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where r0(m, t) is the direct normalized pulse from transmitting to receiving
antennas; s(m, t) -the transmitted LFM pulse whose envelope is unity; SNRk

is the signal-to-noise ratio from the interface between layers k and (k + 1);
µm,k - multiplicative noise; δk(m, t) - the impulse response of the interface
between layers k and (k +1); τk- the two-way time delay of a signal reflected
from the interface between layers k and (k + 1); L -the number of layers;
N0(m, t) is normalized Gaussian noise with zero mean and unity variation;
and “ ∗ ” denotes convolution. Using the basic radar range equation and
also taking into account the signal losses in the propagation path from the
transmitter to the receiver, the SNRk (in dB) can be evaluated as:

SNRk,dB =
∏

GPR,dB+σk,dB−40lg(
k∑

j=1

zk)−LREF
k,dB−LAT

k,dB−LR1,dB−LR2,dB

(1.13)
where

∏
GPR,dB is the radar energy potential (in dB); σk,dB is the radar cross

section of the interface between layers k and (k + 1), zk is the thickness of
layer k ; LREF

k,dB is the signal loss due to signal reflections from the interface
between two layers; LAT

k,dB is the attenuation loss; LR1,dB is the transmission
loss from the antenna to the material; LR2,dB is the retransmission loss from
the material to the air. Typically, for many earth materials, both LR1,dB and
LR2,dB are about 2.5dB. The signal losses due to reflection of a signal from
the interface between layers k and (k + 1) are calculated as

LREF
k,dB = −20lg(Γk

k−1∏
j=1

(Tj,j+1Tj+1,j)) = −20lg(|Γk|
k−1∏
j=1

(1− Γ 2
j,j+1)).

(1.14)
The reflection coefficient Γk and the transmission coefficient Tk in (14) are
defined as:

Γk = (
√

εk+1 −
√

εk)/(
√

εk+1 +
√

εk);Tk =
√

4
√

εkεk+1/[
√

εk+1 +
√

εk]2

(1.15)
where εk is the permittivity of layer k. The attenuation loss of the material
and the radar cross section are calculated as:

LAT
k,dB = 4

k∑
j=1

αjzj and σk = π(tan(Θ/2)
k∑

j=1

zj)2 (1.16)

where αj is the attenuation constant in the j-th layer, and Θ is the beamwidth
of the transmitter/receiver antenna.
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1.3.2 GPR image simulation

The simulation algorithm for GPR images is shown in Figures 3 - 4. As can

Fig. 1.3 Simulation of a range profile Fig. 1.4 GPR image formation

be seen, it includes two main stages: (1) - synthetic range profile formation.
This procedure is repeated for each of N positions of a transmitter/receiver
system. (2) -B-mode image formation. This procedure uses N synthetic range
profiles obtained at a previous stage. According to Figure 3, simulation of
M transmissions of LFM pulses results in the signal matrix of M columns,
where each column contains the echo signal received after transmission of a
LFM pulse. The simulated signal matrix is used for further construction of a
synthetic range profile by one of the two methods, the time-domain method or
the frequency-domain method [5]. According to Figure 4, the signal matrix
with N columns, containing N synthetic range profiles, is used for GPR
image formation. The stage of image formation includes such operations as
interpolation, logarithmic-compression, quantization, and color visualization.

1.3.3 Simulation results

The simulation of B-mode images of a four-layered medium is done by
using the convolution-based model described above. The simulated medium
includes successive layers of dry sand, green sand, saturated sand and gran-
ite with depths of 31m, 21m, 16m and 24m, respectively. The electro-
magnetic parameters of layers (relative permittivity and attenuation) are
ε = (4; 9; 15; 9) and α = (0.03; 0.1; 0.3; 0.2), respectively.

The following radar parameters are used for calculation of the SNR for
each layer: radar energy potential - 120dB; antenna beamwidth - 200; pulse
repetition frequency - 300 kHz; number of LFM pulses needed for construction
of each synthetic range profile - 14, frequency bandwidth of a single LFM
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pulse -2.4 MHz; total frequency bandwidth - [4.6 ÷ 38.2] MHz; sampling
frequency at RF -80 MHz; sampling frequency at baseband -2.5 MHz. The

Fig. 1.5 The synthetic range profile Fig. 1.6 Simulated B-mode image

SNR calculated for a signal reflected from layer 2 is 57 dB, from layer 3 -
40 dB and from layer 4 - 21dB. The corresponding two-way time delay of a
signal reflected from layer 2 is 0.4us, from layer 3 - 0.8us, and from layer 4 -
1.25us.

The time-domain stepped-frequency method is used to produce synthetic
range profiles. The synthetic range profile, constructed in the time domain,
and the simulated B-mode GPR image are shown in Figure 5 and in Figure
6 respectively.

1.4 GPR Data Basic Processing

The most important basic processing algorithms which are used in [10]
have been developed earlier for GPR signal processing. The analysis of GPR
data is carried out by processing the data using different filtering techniques
and gains.

The most important basic processing algorithms in our case are:
• Mean filter (vertical working low-pass filter). This filter acts on each

trace independently. The filter performs a mean over a selectable number of
time samples for each time step;
• Running average (horizontal working low-pass filter). This filter acts on

the chosen number of traces. The filter performs a running average over a
selectable number of traces for each time step;
• Stack traces (compression in horizontal direction). This filter performs

a temporal simultaneous stacking of a selectable number of traces.
• Median filter (pulse jamming and speckle noise reduction). This filter

calculates the median over a selectable time/range area for each time step.
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• Background removal (spatial high-pass filter which makes visible the
shallow objects). This filter performs a subtracting of an averaged trace which
is built up from the chosen time/distance range of the actual section.
• Gain adjustment (corrects the attenuation losses and makes visible the

deep objects). The gain acts on each trace independently. The algorithm pa-
rameter (window length) forms a jumping window. The time window samples
are normalized in range [0-1]. The experimental results obtained enable one
to conclude that the algorithms for the basic signal processing presented in
[10] can be successfully used for analysis of GPR images.

1.4.1 GPR Data Basic Processing- simulation results

In this section some results obtained by the above-mentioned algorithms
are shown. The simulated image of a subsurface medium with five layers
masked by pulse jamming is shown in Figure 7. It can be seen that after
range profile formation, the pulse jamming looks like speckle noise. In or-
der to remove this noise, a median filter can be applied over the selectable
time/range area for each time step. In Figure 8, the real radargram acquired
by the radar GSSI SIR is contaminated with pulse jamming (Figure 7). The
same image “cleaned” by median filtering is shown in Figure 8. The image
presents five underground fuel storage tanks. Benefits of the gain adjustment

Fig. 1.7 Median filtering: nr. of

time samples = 3; nr. of traces=21

Fig. 1.8 Median filtering: nr. of time

samples =5; nr. of traces = 5

Fig. 1.9 Gain adjustment corrects the attenuation losses
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algorithm are illustrated in Figure 9. The simulated radargram of a subsur-
face medium with five layers that is reconstructed in frequency is shown in
Figure 9 (on the left). The gain adjustment applied to this image is also
shown in Figure 9 (on the right). The gain acts on each trace independently.
As a result, this algorithm makes the deep objects visible. The time win-
dow samples are normalized in range [0-1]. However this process destroys the
original information of the signal. Therefore it is recommended to be applied
only for displaying the GPR radargram.

1.5 CFAR filter approach for GPR processing

A conventional Constant False Alarm Rate (CFAR) detector is often used
in primary radar signal processing and is very effective in case of stationary
and homogeneous interference. Different approaches proposed in [7] are real-
ized in different structures of CFAR detectors for operating in non-stationary
non-homogeneous background and random impulse noise. One of them pro-
posed by Rohling for a multi-target situation is to use the ordered statistics
for estimation of the noise level in the reference window. Another approach
is to excise high-power samples from the reference window before processing
by the conventional cell averaging CFAR detector.

This approach is used by Goldman for design of an excision CFAR detector
(EXC CFAR) in order to improve the performance of CFAR detectors in the
presence of impulse interference.

It is obvious that two CFAR processors can be used as 2D filters of GPR
images. The first of them visualizes images after adaptive thresholding (1
or 0), while the second filter visualizes only amplitudes above the adaptive
threshold.

1.5.1 CFAR filters analysis

In modern radar, signal detection is declared if the signal value exceeds
a preliminary determined adaptive threshold. The threshold is formed by
current estimation of the noise level in the reference window. In this processor,
the target is detected according to the following algorithm:{

H1 : Φ(q0) = 1, q0 ≥ TαV
H0 : Φ(q0) = 0, q0 < TαV

(1.17)

where H1 is the hypothesis that the test resolution cell contains echoes from
the target and H0 is the hypothesis that the test resolution cell contains
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randomly arriving impulse interference only. V =
N∑

i=1

xi is the noise level

estimate. The constant Tα is a scale coefficient, which is determined in order
to maintain a given constant false alarm rate (CFAR).

The presence of randomly arriving impulse interference in both the test
resolution cells and the reference cells can cause drastic degradation in the
performance of such a CA CFAR processor.

To overcome the heavy noise environment where the detection is per-
formed, a CFAR processor with Binary Integration (CFAR BI) is proposed.
This signal processor can be considered as N single dimensional CA CFAR
processors working in parallel. The binary integration processor employs a
two-step thresholding technique for target detection. Firstly, a preliminary
decision is made about each pulse of the pulse train reflected from a target.
Pulse detection is declared if the first adaptive threshold is exceeded in the
test cell. For this aim, the conventional CFAR detector can be used. Secondly,
the number of samples, where the first threshold is exceeded, are counted and
the obtained number of detections is compared with the second threshold.
Target detection is declared if the second threshold is exceeded. The results
in [7] show that the CFAR BI detector is more effective in conditions of
intensive randomly arriving impulse interference.

CFAR processors with post detection integrators are proposed for the
case of a homogeneous environment and chi-squared family of target models
(CFAR PI). The possibility for parallel processing of samples in the reference
window can be realized by a parallel computing architecture of the target
detection algorithm. This post detection integration (PI) CFAR processor
consists of a single pulse matched filter, square-law envelope detector, linear
post detection integrator, noise level estimator and comparator.

1.5.2 CFAR filters - simulation results

One real GPR image containing a waste water pipe and a land mine under
a thin layer of wet sand is presented in Figure 10. Three images after the CA
CFAR filtering are shown on Figures 11-13. They are performed by a 16-
element moving window in depth and scale constants T = 1, 1.1, 1.3. When
the scale factor increases the borders between layers become less visible. For
higher values of T the presence of foreign substances (land mines, pipes) is
more perceptible. When CFAR PI filtration is applied to the image from
Figure 10, the result in Figure 14 is obtained. The performance is done with
a rectangular window of size (16X16) and T = 18.

After CA CFAR BI processing of the image from Figure 10, the result
is shown on Figure 15. The binary integration with rule 10/16 leads to the
results depicted on Figure 15. In this case the reference window is of size
(16X16) and T = 6.
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Fig. 1.10 Geo-radar profile (waste water
pipe and a land mine)

Fig. 1.11 Geo-radar profile after CA
CFAR filtering (T=1)

Fig. 1.12 Geo-radar profile after CA

CFAR filtering (T=1.1))

Fig. 1.13 Geo-radar profile after CA

CFAR filtering (T=1.3)

Fig. 1.14 Geo-radar profile after CFAR
PI filtering (N = 16, M = 16, T = 18)

Fig. 1.15 Geo-radar profile after

CFAR BI processing with binary rule

10/16)

1.6 Hough approach in GPR processing

The Hough Transform (HT) is regarded as a template matching method for
feature detection. The conventional HT approach is usually used for straight
line detection and linear objects localization. However, the HT can be success-
fully used for ellipse or circle detection and even for arbitrary form detection.
As a consequence, the HT algorithm can be applied to buried mines detection
transforming all image pixels by automatic detection of circular shapes [1].
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1.6.1 Hough transform based hyperbola detection

The standard hyperbola equation doesn’t meet all GPR constraints. To
deal with the antenna speed fluctuation and the anisotropic wave propagation
an additional parameter is included in this equation. The slightly modified
equation takes the form:

y(ti) =
√

k2(xr(ti)− x0)2 + d2
min. (1.18)

A parameter k may express the difference between the antenna speed and
the basic speed ν0x :

y(ti) =

√
[
k(xr(ti)− x0)

ti − tk
(ti − tk)]2 + d2

min =
√

[kν0x(ti − tk)]2 + d2
min.

(1.19)
k may also express the variations of the velocity of wave propagation when
spreading through the subsurface medium:

y(ti) =
√

k2(xr(ti)− x0)2 + d2
min = k

√
(xr(ti)− x0)2 + (dmin

k )2 =
= k

√
(xr(ti)− x0)2 + D2

min = kν0x(ti − tk)
where ν0x is the accepted wave propagation velocity through the earth.

There are two approaches for hyperbola maximum localization by HT. The
first considers two consecutive standard (for straight line detection) HTs, fol-
lowed by a logical analysis of detection of the corresponding lines. The idea is
to approximate a hyperbola with two straight lines (Figure 16) and find them
with the standard HT. These straight lines have the restricted space position
(depending on the parameter variation), and the algorithm requires limited
computer resources. The main drawback is that the accumulator doesn’t con-
tain information about coordinates of points. As a result many hyperbolas
will be detected, but most of them will be false. A complex combinatorial
algorithm has to be applied to reject ghost hyperbolas. The second drawback
concerns the horizontal hyperbola’s part. This part is usually formed by the
most powerful echoes from the target of interest with the highest signal-to-
noise ratio. That is the main reason to regard this part as the most reliable
source of information about the target position. But in the first approach it
isn’t considered at all.

The second approach applies the HT directly to equation (19). In this
case the HT uses 3D parameter space. The three parameters are x0, y0, k.
The larger parameter space presumes more time for searching the peak and
requires more memory. Still the second approach is accepted as a more per-
spective one. The hyperbola strip width is matched to errors, generated by
the antenna speed fluctuation and by the variable velocity of propagation.
The hyperbola strip is convolved with a Gaussian filter to weight the votes,
falling from points, lying on the central (for this strip) hyperbola, and the
votes from points lying aside it (Figure 16).
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Fig. 1.16 Hyperbola approximation with

two straight lines on hyperbola

Fig. 1.17 Nonlinear asymmetrical
weighting (for the case of 60 received

votes)

1.6.2 Algorithm realization and simulation results

The generalized HT algorithm requires transformation of each image point
from the image (feature) space to the parameter space and accumulates their
votes. Usually the GPR images include not less than 0.5M pixels, every pixel
with 216 or 28 intensity levels. The problem is to find such pixels of similar
intensity lying on a hyperbola (or near to it) that differ from the neighboring
pixels. It is obvious that the computer processing of a whole set of image
points is a tedious task, requiring serious computer resources. This problem is
solvable, but the algorithm will be intensity dependent, which is an undesired
characteristic of every image processing algorithm. To reduce the initial set
of potential points belonging to hyperbolas, filtering algorithms are applied.
Real-time solution of the task includes several steps: the GPR input; 2D FFT
filtering; Canny edge detection; HT hyperbola detection; visualization.

The strongest and almost constant echo-signals are received from borders
between different subsurface layers (Figure 18a). These echo-signals play a
role as powerful low frequency noise and should be removed from the im-
age. The high frequency noise is also present in the image and looks like one
or a few grouped pixels in the image, strongly differentiating from the sur-
rounding pixels. To reject them a 2-D band-pass frequency filtering is applied
over a raw GPR image. The lowest and the highest several frequencies are
rejected, including the constant or DC Fourier component. The filter band-
pass frequencies are matched to both the antenna speed and the echo-signal
attenuation. The band-pass frequency filtering is realized in three steps: 1)
Fast Fourier Transform (FFT); 2) Weighing the Fourier components; 3) In-
verse FFT. The image may be preprocessed in order to limit the bandwidth.
For example, Gaussian smoothing can be applied in advance.

For GPR data, the most suitable Fourier components of a 2-D frequency
filter are chosen as follows: For the highest frequencies, the last 5 Fourier
components in both directions, horizontal and vertical, are nulled. For the
lowest frequencies, the first 30 Fourier components in the horizontal direction
are nulled and the first 10 components in the vertical direction are nulled
(rectangular window). Using frequency domain filtering, excellent robustness
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against correlated and frequency dependent noise is achieved (Figure 18b).
Careful analysis of the output image shows an appearance of weak Gipps
effects near the image borders, but without the influence on the edge detection
algorithm.

The Canny edge detector is used as an image contour detection algorithm.
The Canny method finds edges by looking for local maxima of the gradient
of the pixel intensity. The gradient is calculated using the derivative of a
Gaussian filter. The method uses two thresholds for detecting the strong and
the weak edges, and includes the weak edges in the output only if they are
connected with strong edges. This method is therefore less sensitive to noise
than the others, and it can localize true weak edges. The Canny edge detector
is used mainly to reduce the number of pixels of interest by two orders of
magnitude. The final result is very promising - the number of non-zero pixels
in GPR images is reduced from 0.5M to several thousands. The values of
chosen parameters are: 0.3 - for lower threshold, 0.33 - for higher threshold
and 3 - for standard deviation of the Gaussian filter (Figure 18c).

The HT algorithm is realized as follows. Two windows, one for the left half
of a hyperbola and the second for the right half of a hyperbola are gener-
ated. Both windows are applied to the image at the output of a Canny edge
detector. As a result, two accumulator spaces are obtained for the left and
the right half of the hyperbola. How to merge them? This step is very im-
portant for the final result of the whole filtering. Practice proves that robust
results are obtained only if there is symmetry of votes for both parts. The

Fig. 1.18

proposed algorithm realizes the common accumulator space by multiplication
of contents of both accumulator spaces, element by element. It is clear that
this operation will amplificate accumulators in both parameter spaces with
the equivalent number of votes and will weaken accumulators with asymmet-
ric distribution but with the equivalent sum of votes to the previous case
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in both parameter spaces (Figure 18b). Peak detection is performed after
thresholding. The located objects are displayed on Figure 18d.

1.7 A Bayesian algorithm for object detection in GPR
data

A number of sophisticated techniques for background signal reduction and
object detection have been proposed, accounting for the nonstationary and
correlated nature of GPR signals. They usually incorporate complex models
and time-consuming learning stages for model parameter adjustment. The
aim of this investigation is to use simple models with robust processing algo-
rithms.

A GPR data processing algorithm relying on simple background and target
models is suggested by Dr. Carevic, cited in [3]. It is based on the “variable di-
mension filtering approach” to target tracking. Background estimation, target
detection and target-background separation are performed within a common
Kalman filter-based computational procedure. This algorithm is successfully
applied to reduce the background interference signals and to detect shallow
buried targets. However, in the case of large state dimensions the target sig-
nal estimate can be unsatisfactory. Also, additional information is needed for
identifying target extent.

The novelty of the results obtained in [2, 3] is that the constructive ele-
ments of a Kalman filtering approach are extended with the advantages of
hybrid Bayesian estimation. The set of GPR data is processed in two consecu-
tive steps. At the first step, a part of the algorithm of Dr. Carevic is realized:
a Kalman filter (KF) estimates the background signal, time-varying noise
characteristics and detects possible targets. The estimated noise parameters
are utilized at the second step, where an Interacting Multiple Model (IMM)
algorithm is applied. Using multiple models and efficient Bayesian mecha-
nism for information fusion, the IMM algorithm assesses more precisely the
target signal and target extent. The IMM posterior model probabilities assist
in the decisions of the Kalman filtering procedure, increasing the probability
of target detection.

Change detection methodology provides efficient tools for automatic on-
line (or off-line) signal segmentation. The cumulative sum (CUSUM) tests
are computationally simple and robust procedures, giving relevant results in
the cases of slowly time-varying signals before and after the abrupt change.
A sequential CUSUM test is developed and investigated using the innovation
properties of the Kalman filter as the next stage of the target recognition sys-
tem. The experiments show promising results in terms of estimation accuracy,
probability of target detection and false alarm probability [3].
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1.7.1 Processing algorithms

B-scan (or radargram) data contain the received GPR signals u(n, k),
where n = 0, ..N − 1 denotes the signal time samples and k = 0, 1, .., cor-
responds to the spatial position of the receive antenna. In the framework
of state space representation, the radargram data are divided into P non-
overlapping horizontal strips with depth m. Based on appropriate models, a
set of P KFs is run in parallel on each data strip. Next, a set of P IMM fil-
ters is implemented, using the KFs’ output parameters. The estimators work
independently of each other, but exchange information for more reliable deci-
sion making. The goal of this combined KF-IMM algorithm is to detect and
estimate target signals by fragmenting the data into target and background
regions. The algorithm can be summarized by the following two steps.

Step I: A KF for background estimation and target detection. Using a “qui-
escent state model” [3] and the GPR measurements, the KF recursively pro-
duces a background state estimate with its associated state covariance. The
properties of measurement residual (innovation) are employed to detect the
targets and to adapt the filter to time-varying background parameters. The
detection algorithm uses a χ2 test and innovation-based statistic (normalized
innovation squared (NIS) [3]) to detect the presence of possible targets. Un-
der the hypothesis that the target is not present (“target-free” hypothesis),
the NIS has a χ2 distribution with m degrees of freedom. If NIS exceeds a
threshold, determined by some level of significance, a procedure for target
detection is initiated. If the “target-free” hypothesis is rejected for at least
K1 consecutive spatial positions (traces) and for at least K2 of the total of
P strips, the target is considered to be detected and its size is determined
proportionally to the values of K1 and K2.

Noise identification. The correct knowledge of process and measurement
noise statistics is a prerequisite for consistent KF operation. In general, the
noise statistics are not known or partially known. The measurement error
covariance can be estimated on line or selected a priori according to some rules
or practical considerations. In the present realization it is determined through
the variances of the radargram data, calculated along the traces for each strip.
Due to soil inhomogeneities, the background signal slowly varies with trace
numbers k and soil layers p = 0, 1, ..., P . The filters are adapted to this
feature by using time-varying process noise characteristics. Two background
adaptation procedures are implemented and experimented here. According to
the first one, the noise covariance is updated recursively by a scaling factor.
At each trace number k, the scaling factor is modified according to logic,
managed by the NIS values and a set of thresholds, selected according to
χ2 distribution. A hybrid estimation technique for noise identification is also
realized and experimented.

Step II: An IMM filter for target signal estimation and target-background
separation. Using multiple models, accounting for different data regions
(background or background plus target), the IMM algorithm has a poten-
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tial for robust data segmentation. The IMM design configuration incorpo-
rates three models. The first one corresponds to the hypothesis that only a
background is present. The process noise covariance is obtained by the back-
ground adaptation procedure, implemented at Step I. The target is modeled
approximately as a stochastic bias with different magnitudes. The next two
models match to the hypotheses that a bias is available in addition to the
background. The input noise covariances are selected in such a way that the
signal jumps caused by the targets can be detected and estimated. The IMM
filter produces a combined state estimate as a weighted sum of model-matched
estimates. The posterior model probabilities segment the radargram data into
target and no-target areas. Comparison with the KF detection output can
help for more reliable target identification.

A great variety of change detection tests are proposed and investigated
in the statistical literature. Here, the CUSUM test is appended to the KF
algorithm (discussed in Step I) in order to increase the probability of target
detection.

A Kalman filter with CUSUM test for B-scan data segmentation. It is
found in the investigations devoted to GPR data processing, that the resid-
ual energy obtained by removing background components from the GPR
signal is more reliable for change detection. Based on this inference, we apply
the CUSUM algorithm to the difference between the radargram data and
background state estimate. If the evolution of this substacted signal is de-
scribed by a simplified linear model, a KF can be implemented to yield the
subtracted signal state estimate. If the target is not present, the measurement
residual is zero mean, Gaussian and white. The signal anomalies, caused by
the objects, alter the parameters of the Gaussian distribution. Thus, the task
of target onset detection is transformed to the problem of change detection
in the Gaussian distribution. Practically, the change point detection is ap-
proximately considered as the detection of changes in the mean value of the
Gaussian distribution. A simple recursive two-sided CUSUM test is realized
and experimented. It confirms the decisions of the KF-based detector and
provides additional information for target onset. The CUSUM test is also
applied to the transposed GPR image. Thus, the test approximately outlines
the borders between the layers and can be used for the purposes of ground
layers segmentation.

1.7.2 Experimental results

Algorithm performance is studied over a series of real radargrams, acquired
by GSSI SIR Systems. The design parameters are chosen as follows: the depth
of the horizontal strips is m = 50 and the number of strips is P = 6. The
parameters of the KF detection algorithm are selected as follows: K1 = 15 and
K2 = 2 . The combined KF-IMM algorithm detects two objects in the image,
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Fig. 1.19 a) Original GPR image and b) estimated objects’ position by KF-
IMM

Fig. 1.20 a) KF object detector and b) IMM detector by KF-IMM

Fig. 1.21 a) KF-IMM algorithm detects two pipes b) CUSUM detector con-

firms the KF results at p = 3

presented in Figure 19a. Outputs of the KF and IMM detectors are presented
in Figure 20a and Figure 20b, respectively. Based on this information, the
objects’ positions are approximately determined, as can be seen in Figure
19b. The first object (a sewerage pipe under consideration) is positioned
over 3 consecutive layers (p = 2, 3, 4) and its presence is confirmed by both
detectors. Since the second object (positioned on strips p = 0, 1) is a clutter
object, additional information about the pipe size is needed to discard it. The
KF-IMM algorithm detects two real objects in the image presented in Figure
21a. The CUSUM test, implemented after the KF procedure, validates the
presence of the objects (Figure 21b).
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1.7.3 Implementation of Low-Frequency GPR Signal
Algorithms using a conventional narrowband
digital transmit-receiver systems

The earlier described stepped-frequency approach with time domain re-
construction reveals a possibility to obtain high-range resolution images with
a conventional narrow-band transmitter/receiver digital system for GPR im-
plementation. A survey was performed to test the maximal frequency band-
width by using a traditional narrow-band transmit/receiver system composed
of commercial signal processing devices: ADC(AD6644), DAC(AD9772), re-
ceiver, synthesizer, on-line signal processor running on a PC. In that way
the whole ADSs and DACs bandwidth (60 - 100 MHz) can be filled up with
a set of narrow-band Receiver/Tranceiver Signal Processors (RSP AD6624
and TSP AD6623 - 2.2MHz) [4]. A multi-module and a multi-channel digital
system composed of narrowband receivers (RSPs) and transmitters (TSPs)
(Figures 22, 23) is developed in order to transmit and receive wideband sig-
nals within the whole frequency band of commercial ADCs and DACs. It is
a traditional hardware approach, which unfortunately requires multiple con-
trol of a multi-module digital system and, evidently, involves high financial
expenses [4]. Considering the limitation parameters of the Signal Processors
(RSP AD6624 and TSP AD6623), a Monte-Carlo approach for their param-
eter optimization is used. Only four parameter sets of the stepped frequency
processing are found for the implementation in GPR. The theoretical calcu-
lations show that the role of a GPR stepped-frequency algorithm in the time
domain, quadrature demodulation and decimation, can be implemented on
the basis of a single 4-channel Analog Devices’s AD6624 and AD6623 using
at most two channels [4]. Figure 24 shows the MPS signal processor based
on two DSP signal processors and conventional industrial box, which encap-
sulates the signal processing hardware and is used in MPS Ltd. for a GPR
system.

Fig. 1.22 Block diagram of the digital receiving system based on four-channel receive
signal processors (RSP) AD6624
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Fig. 1.23 Block diagram of the digital transmitting system based four-channel trans-
mit signal processors (RSP) AD662

Fig. 1.24 The conventional industrial box, which encapsulates the signal processing

hardware in a MPS Ltd. GPR system and the signal processor based on two DSP

signal processors

1.7.4 FPGA Implementation of a Low-Frequency GPR
signal algorithm

This paragraph reveals a possibility for implementation of the stepped-
frequency algorithm with time-domain reconstruction on a hardware plat-
form in real time i– a step closer to real implementation. The hardware
reconfigurable platform XUPV2P, based on VIRTEX II Pro technology is
used (Figure 26). A block diagram of the algorithm suitable for a reconfig-
urable hardware implementation is presented in Figure 25. All computational
kernels from the algorithm are designed as separate hardware blocks, and ver-
ified individually and stacked together. Considering the previously described
stepped frequency algorithm [5], a block diagram of the receiver was made. It
consists of: down conversion; interpolation; phase correction; frequency shift-
ing; buffering the whole constructed signal; correlation; envelope detection,
normalization and image storing. The block diagram of the receiver is shown
in Figure 25. The number of transmitted pulses is M = 14. The sampling
frequency of the signal is 80Mhz, the sampling frequency of the video signal -
2,25Mhz, minimal frequency carrier fmin = 4.6Mhz, maximal frequency car-
rier fmax = 38.2Mhz, the step in frequency is df = 2.4Mhz. The frequency
sweep rate is b = ∆f/Tp. Tp is the time duration of a narrow-band chirp,
in our case - 1.6ms. The down converter is implemented according to the
specifications of the Digital Down Converter (DDC) V1.0 (Xilinx IPTM ) [9].
It encompasses the following processing: Quadrature Amplitude Demodula-
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Fig. 1.25 Block diagram of the receiving

structure)
Fig. 1.26 XUP TM Virtex-II Pro De-

velopment System

tion, Low Pass Filter and decimation by 32. The input signal consists of 5376
samples. The tests were performed considering following parameters: System
frequency rate: 100Hz; Input signal frequency: 80MHz; Input data width: 16
bits; Output data width: B8=18 bits; Spurious dynamic range of the digital
synthesizer: 40dB; Frequency resolution: 0.5MHz; Phase angle: fixed; Output
mixer width: 20 bits. The finite impulse response (FIR) filter is included in
the synthesis of the digital down converter, the decimation rate is 16; the
FIR filter length is 16 and the result precision is 12. The time domain recon-
struction follows. It consists of phase correction and frequency shifting. Next
a buffer for signal reconstruction (coherent summing) follows. It consists of
a standard storage buffer based on memory block core [2]. Considering the
signal processing principles the correlator consists of multiplication between
received and transmitted signals in the frequency domain. Therefore we put
two 64-point FFT transforms, one each for the received signal and for the
transmitted signal. Next an IFFT is needed to come back to the time domain
(Figure 25) [8]. An envelope detector and a signal normalization follow (Fig-
ure 25). The envelope detector consists of two multipliers and a sqrt block,
which is based on the CORDIC v.3.0 architecture [9]. The transceiver consists
of a look-up table, which contains the signals for transmitting. The number
of signals is 14 and each of them consists of 128 samples. The transmitted
signal is formed by the Tukey window before sending it to the Digital to
Analogue Converter.

Simulation results. The simulation results are obtained via the ModelsimTM

simulator [9]. A VHDL code was written, and studied through the ModelsimTM

simulator. After the performed simulation, the constraints for real time imag-
ing were defined. The correlation is performed for 108 µs. The total synthesis
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estimation parameters are: number of slices = 8937; BRAM = 30; Mult18x18
= 62. After the simulation performing the real time constraints took approx-
imately 400 µs. According to the synthesis report, the usage of the processor
was almost 75%.

1.8 Conclusions

The simulation results based on the Monte-Carlo approach enable us to
conclude:
• The stepped-frequency GPR processing method for range profile for-

mation in the time domain, operating at 4.6 MHz to 38.2 MHz, generates
synthetic range profiles with the resolution of 1-2 m by transmitting 14 nar-
rowband chirps at each GPR position.
• A new convolution-based algorithm for simulation of stepped-frequency

GPR images from multi-layered media can be successfully used for analysis
and parameter optimization in stepped-frequency GPR.
• The basic algorithms for GPR signal and image processing such as mean

filters (vertical working low-pass filter), running averages (horizontal working
low-pass filter), stack traces (compression in horizontal direction); median
filters (pulse jamming and speckle noise reduction), background removals
(spatial high-pass filter) that make visible the shallow objects and gain ad-
justment algorithms (correct the attenuation losses and make visible the deep
objects) are effective algorithms for GPR image processing.
• Applying CFAR filters and Hough filters to GPR image processing is a

good decision.
• The designed multiple models Particle Filter (PF) for contour determi-

nation and segmentation in GPR images has shown encouraging results in
terms of convergence and accuracy, at the cost of acceptable computational
complexity.
• Applying Kalman filters to GPR data processing gives promising results

in terms of estimation accuracy, probability of target detection and false
alarm.
• The processor VIRTEX II Pro is suitable for implementation of the

stepped-frequency processing algorithm for synthetic range profiling in the
time domain.

Generally speaking, the approaches and algorithms considered in this chap-
ter can be successfully used for UXO signal processing and multi-sensor (chan-
nel) UXO signal processing.
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