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Abstract We show the relevance of multifractal analysis for some problems in im-
age processing. We relate it to the standard question of the determination of correct
function space settings. We show why a scale-invariant analysis, such as the one
provided by wavelets, is pertinent for this purpose. Since a good setting for images
is provided by spaces of measures, we give some insight into the problem of multi-
fractal analysis of measures using wavelet techniques.
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Hölder regularity, image classification, image processing, measures, multifractal
analysis, scaling function, scale invariance, spectrum of singularities, wavelets,
wavelet leaders.

1 Introduction

The detection of UXO (Unexploded Ordnance) uses sensor technologies, such
as: GPR (Ground Penetrating Radar), where electromagnetic waves penetrate the
ground and are reflected by layers with electrically different natures; IR (Infrared
sensors), based on the different thermal properties of different layers of the ground;
and Ultrasound sensors, which use ultrasound waves as a probe. In each case, one
faces difficult signal or image processing problems. Indeed, ill-posed inverse prob-
lems have to be solved in the presence of noise. Note however that these problems
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are related to similar technological challenges which have been extensively studied
in the past. For instance, oil detection can be performed by studying the reflections
of vibrations emitted at the surface of the earth. Similarly, the deep structure of
the mantle of the earth is studied by such methods, but the (much more powerful)
vibrations used actually are earthquakes.

The resolution of such ill-posed problems in the presence of noise usually neces-
sitates preprocessing which involves denoising, deblurring, and then the inversion
of operators which are of pseudo-differential type. In order to be numerically stable,
these operations require the choice of a function space which

• supplies a proper mathematical setting for the resolution,
• is a realistic framework for the kind of signals or images considered.

While the first problem has attracted a lot of attention among mathematicians, the
second one is usually disregarded. However, in a completely independent way, this
question has been addressed since the 1940s, initially by physicists working to deter-
mine the function space regularity of fully developed turbulence. Their motivation
was, first, the fundamental comprehension of the physical phenomena at work, but
they also wanted to use this information as a classification tool in order to select
among the many turbulence models that have been proposed. Mutifractal analysis
is now used in a large number of problems in signal and image processing, but still
retains this initial motivation of a classification tool based on function space regu-
larity.

Images are often stored, denoised, and transmitted using their wavelet coeffi-
cients. In particular, due to the success of wavelet techniques in the 90s, the JPEG
2000 benchmark is based on wavelet decompositions. Therefore, it is relevant to
analyze images directly using their wavelet coefficients instead of starting from the
pixel values, and many image processing techniques are now based directly on the
wavelet coefficients of the image. Multifractal analysis is one example of such a sit-
uation. It was introduced in signal processing in the mid-80s (but relies on insights
developed as early as the 1940s by N. Kolmogorov), and can be interpreted as the
determination of the smoothness index of the signal analyzed inside some fami-
lies of function spaces. This smoothness index is stored through a one-dimensional
family of parameters, the scaling function, which is based on the computation of
p-order averages of local quantities (such as oscillations) of the signal. Initially in-
troduced as a tool for the study of fully developed turbulence, it turned out to be
also pertinent in order to study signals of many different origins and has lead to new
methods of classification and identification.

In Section 2 we start by describing wavelet bases and some of their properties;
a particularly relevant one is that by construction, their algorithmic form implies
that they are fitted to the dectection of scale-invariance properties in signals and
images. Another important property is that wavelets allow simple characterizations
of function spaces.

In Section 3 we give a short overview of the use of function spaces in image mod-
eling and image processing; indeed, it has become a key issue in many algorithms,
such as denoising, inpainting or texture classification.
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In Section 4 we introduce the wavelet scaling function and give its most impor-
tant properties. We show that the information supplied by function space regularity
is encapsulated in this scaling function, and that wavelet techniques yield numeri-
cally simple algorithms for the determination of this scaling function.

In Section 5 we recall the basics of multifractal analysis: we show that the scaling
function can be given an alternative interpretation in terms of the pointwise smooth-
ness of the signal. This interpretation has proved particularly important for several
reasons: It has allowed the introduction of other scaling functions, which are better
suited for that purpose, and it also allowed to extend the scaling function to nega-
tive values of p, see [9], which proved particularly important for some classification
problems, where the difference between several possible models can only be drawn
for negative p’s. We will focus on the wavelet leader scaling function which now
plays a key-role in several fields of applications because it is mathematically well
understood, numerically stable, and can be coupled with powerful statistical tests.

In Section 6 we show that this method cannot be directly used in image process-
ing because it assumes that the function studied is bounded, and such a requirement
is usually not a valid framework in image analysis. Therefore, one has to perform
first a preprocessing which associates to the image another bounded function; this
association should be one-to-one in order to lose no information, and should retain
as much as possible the relevant features of the image. A standard way to solve this
problem is to perform a fractional integration of large enough order. However, in
practice, this is difficult to realize; therefore, we introduce the notion of pseudo-
fractional integration which is numerically simple, and retains the same qualitative
properties. We investigate how this affects the multifractal properties of the image,
and we give a general condition, which is usually met in mathematical models, un-
der which these properties can be exactly determined.

2 Wavelet bases

Recall that L2(Rd) is the space of square-integrable functions, i.e. of functions sat-
isfying ∫

Rd
| f (x)|2dx < ∞.

It is endowed with the norm

‖ f ‖2=
(∫

Rd
| f (x)|2dx

)1/2

.

Historically, the first wavelet basis was introduced by A. Haar in 1909. He no-
ticed that, if ψ = 1[0,1/2) − 1[1/2,1), then the collection of the function 1 and the
ψ j,k = 2 j/2ψ(2 jx− k) for j ≥ 0 and k = 0, · · · ,2 j − 1 form an orthonormal basis
of L2([0,1]), and this irregular basis (its elements have discontinuities) nonetheless
displays some better properties than the trigonometric system: If f is a continuous
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function, then the partial sums of the reconstruction converge uniformly to f . The
next wavelet basis, which has the same simple algorithmic form, was introduced
by J. Strömberg in the 80s: he constructed functions ψ , which can be arbitrarily
smooth, and so that the wavelet basis generated allows to decompose functions of
arbitary smoothness, or, by duality, distributions. An important feature noticed by
Strömberg, and which will play a key role in the following, is that therefore the same
wavelet basis can be used in order to analyse functions or distributions, without any
a priori assumption on their regularity, and on the function spaces to which they be-
long. The “rule of thumb” is that the wavelet expansion of f will converge in “most”
function spaces that actually contain f , if the wavelets are smooth enough. This is
particularly important in signal and image processing, where smoothness properties
can vary significantly from one type of image to another, and therefore the analy-
sis tool should not imply unnecessary a priori assumptions on the data, since their
regularity is unknown (actually, one of our purposes will precisely be to determine
regularity indices in scales of function spaces).

We will now recall the algorithmic form of wavelet bases, in particular in several
dimensions. We refer to [5, 10, 11] for detailed expositions of the construction of
such bases.

Orthonormal wavelet bases on Rd are of the following form: There exists a func-
tion ϕ(x) and 2d − 1 functions ψ(i) with the following properties: The functions
ϕ(x− k) (k ∈ Zd) and the 2d j/2ψ(i)(2 jx− k) (k ∈ Zd , j ∈ Z) form an orthonormal
basis of L2(Rd). This basis is r-smooth if ϕ and the ψ(i) have partial derivatives up
to order r and if the ∂ α ϕ , and the ∂ α ψ(i), for |α| ≤ r, have fast decay.

Therefore, ∀ f ∈ L2, we have the following decomposition

f (x) = ∑
k∈Zd

Ckϕ(x− k)+
∞

∑
j=0

∑
k∈Zd

∑
i

ci
j,kψ

(i)(2 jx− k); (1)

the ci
j,k are the wavelet coefficients of f :

ci
j,k = 2d j

∫
Rd

f (x)ψ(i)(2 jx− k)dx, (2)

and
Ck =

∫
Rd

f (x)ϕ(x− k)dx. (3)

Note that, in (1), we do not use the L2 normalisation for the wavelets, but a
normalisation which is better fitted to the definition of the wavelet leaders that we
will give below.

Formulas (2) and (3) make sense even if f does not belong to L2; indeed, if one
uses smooth enough wavelets, they can be interpreted as a duality product betweeen
smooth functions (the wavelets) and distributions.
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We will use more compact notations for indexing wavelets. Instead of using the
three indices (i, j,k), we will use dyadic cubes. Since i takes 2d −1 values, we can
assume that it takes values in {0,1}d − (0, . . . ,0); we introduce:

• λ (= λ (i, j,k)) =
k
2 j +

i
2 j+1 +

[
0,

1
2 j+1

)d

.

• cλ = ci
j,k

• ψλ (x) = ψ(i)(2 jx− k).

The wavelet ψλ is essentially localized near the cube λ ; more precisely, when the
wavelets are compactly supported

∃C > 0 such that ∀i, j,k, supp(ψλ )⊂C ·λ

(where C ·λ denotes the cube of same center as λ and C times wider). Finally, Λ j
will denote the set of dyadic cubes λ which index a wavelet of scale j, i.e. wavelets
of the form ψλ (x) = ψ(i)(2 jx− k).

Among the many families of wavelet bases that exist, two will prove particularly
useful:

• Lemarié-Meyer wavelets: ϕ and ψ(i) both belong to the Schwartz class, see [11];
• Daubechies wavelets: the functions ϕ and ψ(i) can be chosen arbitrarily smooth

and with compact support, see [5].

Finally, note that in practice one never needs to compute integrals in order to
determine the wavelet coefficients of a signal or a function. There exist fast decom-
position and reconstruction algorithms which allow to compute the coefficients via
discrete convolutions (filtering algorithms). These algorithms were discovered by S.
Mallat: They are a consequence of the method of construction of wavelet bases, see
[5, 10].

3 Image processing: the function space approach

Image processing often requires a priori assumptions, which amount to deciding
that the image considered belongs to a given function space.

A standard approach consists of assuming that the relevant information in an
image can be modeled by a “cartoon”, which is composed of piecewise smooth
parts separated by discontinuities along piecewise smooth curves. This is typical of
photographs taken inside buildings, when no texture is involved. Note that natural
images rarely follow this assumption, since most objects are textured and often have
“fractal” edges (e.g. trees, clouds, mountains,...). However, the assumption of dis-
continuities along (not necessarily smooth) lines is mandatory in image processing,
because of the occlusion phenomenon: one object can be partially hidden behind
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another; therefore, this “cartoon model” is the smoothest one we can expect in prac-
tice. It is easy to associate a function space to such a model. Indeed, the gradient
of a cartoon will be smooth, except along the lines of discontinuities, where Dirac
masses will appear along those lines. Therefore the gradient will be a bounded
measure.

The space of functions whose gradient is a bounded measure is called BV (for
“bounded variation”). Note however that modeling using the space BV does not
entirely recapture the essence of the cartoon model, since a cartoon necessarily is
a bounded function and, in dimension 2, a function in BV can be unbounded: The
reader will easily check that singularities which behave locally like |x− x0|−α for
α < 1 can occur. Therefore the alternative space BV

⋂
L∞ is often proposed (recall

that L∞ is the space of bounded functions).
Real-life images never are cartoons, since they always contain some parts with

either rough boundaries, textures or noise. A standard assumption is that they can
be modeled as a sum of a function u ∈ BV and another term v which will model the
noise and texture parts. There is much less consensus on which regularity should be
assumed for the second term v. The first “u+v model” (introduced by Rudin, Osher
and Fatemi in 1992, [14]) assumed that this part belongs to L2; however, the very
strong oscillations displayed by some textures have suggested that such components
do not have a small L2 norm, but might have a small norm in spaces of negative
regularity index (i.e. spaces of distributions). Therefore the use of spaces such as
divergences of L∞ functions (or divergences of L2 functions) were proposed (note
that, here again, derivatives have to be taken in the sense of distributions), initially
by Y. Meyer, see [12], and then by several other authors, see [4, 13] and references
therein. More sophisticated models also aim to separate the noise from the texture,
and therefore propose to split the image into three components (u + v + w models,
see [4]). All these methods are minimization algorithms based on the assumption
that each of these components belongs to a different function space.

The Rudin-Osher-Fatemi algorithm proposed to extract the cartoon component u
by minimizing the functional

J(u) =‖ u ‖BV +t ‖ f −u ‖2
2,

where f is the initial image, and t is a scale parameter which has to be tuned.
In 2001, Y. Meyer proposed to minimize the alternative functional

J(u) =‖ u ‖BV +t ‖ f −u ‖G,

where
‖ f ‖G= inf

g: f =∇·g
‖ g ‖∞ .

More recently, in 2003, Osher, Solé and Vese proposed another model which
recaptures the same fundamental idea but uses for the texture and noise component
a space of distributions easier to handle, the Sobolev space H−1, generated by partial
derivatives of order 1 of L2 functions. The corresponding functional is
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J(u) =‖ u ‖BV +t ‖ f −u ‖2
H−1 .

Several alternatives have been more recently proposed, based on the same funda-
mental ideas, but using other function spaces. However the relevance of one partic-
ular function space is usually advocated using either theoretical arguments derived
from functional analysis, or practical arguments motivated by the algorithmic im-
plementation. The fundamental problem of determining to which function spaces a
given image (or a part of a given image) belongs has been rarely considered. (See
however [7] where the authors question the fact that natural images belong to BV ,
and actually answer in the negative.) The resolution of this problem is justified by
several reasons. A first motivation rises implicitly from the short review we just
performed: The function spaces used in modeling should fit the data. Another moti-
vation is that, if these function spaces depend strongly on the image that is consid-
ered, then this information might prove useful in image classification. This second
motivation is at the origin of multifractal analysis. Before describing the functional
information supplied by multifractal analysis, we turn to another fundamental ques-
tion in function-space modeling: Can one find a “natural” function space which a
priori contains all images?

Without any assumption, we can of course safely adopt the widest possible math-
ematical setting, which is supplied by distributions. However, the physical proce-
dure through which an image is captured tells us that it is a local average of the light
intensity, and therefore is a nonnegative quantity. Therefore an image is a positive
distribution; but a famous theorem of L. Schwartz asserts that positive distributions
necessarily are bounded measures. Therefore the setting supplied by bounded mea-
sures seems to be a conservative option for the choice of a “universal” space that
would contain all possible natural images.

4 The wavelet scaling function

The first seminal ideas that led to mutifractal analysis were introduced by N. Kol-
mogorov, in the field of fully developed turbulence. Let f be a function Rd −→ R.
N. Kolmogorov associated to f its scaling function which is defined as follows.

Let p ≥ 1, and assume that, when h → 0,∫
| f (x+h)− f (x)|pdx ∼ |h|η f (p), (4)

then η f (p) is the scaling function of f . It can be given a function space interpretation
with the help of the Lipschitz spaces Lip(s,Lp): Let s ∈ (0,1), and p ∈ [1,∞]; f
belongs to Lip(s,Lp(Rd)) if f ∈ Lp and

∃C > 0, ∀h, ‖ f (x+h)− f (x) ‖p≤C|h|s. (5)

It follows from this definition that, if η f (p) < p,
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η f (p) = sup{s : f ∈ Lip(s/p,Lp(Rd))}. (6)

The initial definition given by Kolmogorov is difficult to use in practice, and suf-
fers from mathematical restrictions. An obvious one is that we have to assume the
precise scaling law (4); we also have to assume that f is a function, and we saw
that we actually want to analyze larger classes of mathematical objects (spaces of
measures, and distributions); finally, we want to derive the scaling function from the
wavelet coefficients of f , through a simple formula. One solution is to extend the
characterization of the scaling function by using Besov spaces instead of Lipschitz
spaces. The easiest way to define Besov spaces is through their wavelet characteri-
zation (we assume that the wavelet basis used is smooth enough).

Let p ∈ (0,∞); a function f belongs to the Besov space Bs
p(Rd) (also referred to

as Bs,∞
p (Rd)) if and only if (Ck) ∈ lp and

∃C, ∀ j, ∑
λ∈Λ j

[
2(s−d/p) j|cλ |

]p
≤C. (7)

We will pay special attention to the case p = +∞: f belongs to Bs
∞(Rd) if and

only if (Ck) ∈ l∞ and
∃C, ∀λ , |cλ | ≤C2−s j. (8)

The spaces Bs
∞ coincide with the uniform Lipschitz spaces Cs(Rd); for instance, if

0 < s < 1, an equivalent definition is given by: f ∈ L∞ and

∃C, ∀x,y | f (x)− f (y)| ≤C|x− y|s.

The uniform Hölder exponent of f is

Hmin
f = sup{s : f ∈Cs(Rd)}; (9)

it yields an additional parameter for image processing and classification that will
prove important in the following.

The embeddings between Besov and Lipschitz spaces imply that, if f is an L1

function such that η f (p) < p, then its scaling function can be defined indifferently
using the Besov or Lipschitz scales:

η f (p) = sup{s : f ∈ Bs/p
p }. (10)

Let
S f (p, j) = 2−d j

∑
λ∈Λ j

|cλ |p

then

η f (p) = liminf
j→+∞

log
(
S f (p, j)

)
log(2− j)

, (11)

which follows immedialtely from (10). This formula has practical implications: it
allows to compute the scaling function through a linear regression on a log-log plot.
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Fig. 1 (top right) shows an example of a wavelet scaling function for a real-world
image.

Note that the uniform Hölder exponent of f can be derived from the scaling
function

Hmin
f = lim

p→+∞
η
′
f (p);

it can also be derived directly from the wavelet coefficients of f ; indeed, it follows
from (9) and the wavelet characterization of the Besov spaces Bs

∞ that, if

ω j = sup
λ∈Λ j

|cλ |,

then

Hmin
f = liminf

j→+∞

log(ω j)
log(2− j)

. (12)

This is illustrated in Fig. 1 (bottom right).
The derivation of the scaling function through (11) has several advantages:

• Since Besov spaces are defined for p > 0, it makes sense for p ∈ (0,1) whereas
Lipschitz spaces are not defined for p < 1. This yields an additional useful range
of values for classification.

• It does not make any a priori assumption of the regularity of f , which can be a
measure or even a distribution.

• It allows for an easy numerical implementation.

The knowledge of the scaling function allows to settle the issues we raised con-
cerning the function spaces which contain a given image. For instance, the embed-
dings between the Besov spaces and the other classical function spaces have the
following consequences:

Proposition 1. Let f be a distribution defined on R2. The values taken by the scaling
function at 1, 2 and +∞ have the following implications:

• If η f (1) > 1, then f ∈ BV , and if η f (1) < 1, then f /∈ BV
• If f is a measure, then η f (1)≥ 0, and, if η f (1) > 0, then f belongs to L1.
• If η f (2) > 0, then f ∈ L2 and if η f (2) < 0, then f /∈ L2.
• If η f (2) >−2, then f ∈ H−1 and if η f (2) <−2, then f /∈ H−1.
• If Hmin

f > 0, then f is bounded and continuous, and if Hmin
f < 0, then f /∈ L∞.

• If Hmin
f >−1, then f ∈ G and if Hmin

f <−1, then f /∈ G.
• If f is a measure, then Hmin

f ≥−2.

Most of these statements are easy consequences of standard function space em-
beddings. The second one is particularly important for the validation of many mod-
els. Indeed, in several fields of applications, models which are singular measures are
used. Since they are measures, it follows that η f (1) ≥ 0, and since they are not L1

functions, η f (1)≤ 0. It follows that they must necessarily satisfy η f (1) = 0, a sharp
requirement which has the widest range of validity (it is completely non-parametric,
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Fig. 1 Image of snow (left), wavelet scaling function η f (p) (top right) and uniform Hölder expo-
nent Hmin

f (bottom right). Their respective estimated values are η f (1) = 0.254, η f (2) = 0.412 and
Hmin

f =−0.212.

i.e. does not make the assumption that the measure has a particular form) and it can
be checked on real-life data in order to validate those models.

We only prove the first assertion which concerns measures because of the partic-
ular importance of this result (the other assertions have similar proofs). It is a direct
consequence of the following lemma.

Lemma 1. Let µ be a bounded measure on Rd; then its wavelet coefficients µ j,k
satisfy

∃C ∀ j, 2−d j
∑

λ∈Λ j

|cλ | ≤C. (13)

Conversely, if µ satisfies the slightly stronger requirement

∃C ∑
j

2−d j
∑

λ∈Λ j

|cλ | ≤C, (14)

then µ is an L1 function.

Proof of Lemma 1: Recall that a bounded measure µ is a linear form on the
space of continuous bounded functions, i.e. satisfies

|〈 f |dµ〉| ≤C ‖ f ‖∞

for any continuous bounded function f .
Denote by cλ the wavelet coefficients of µ , and by ελ their signs (with the con-

vention that sign(x) = 0 if x = 0). Let
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f j = ∑
λ∈Λ j

ελ ψλ .

On one hand,
〈 f j|dµ〉= ∑

λ∈Λ j

ελ cλ 2−d j = 2−d j
∑

λ∈Λ j

|cλ |;

but, on the other hand,
〈 f j|dµ〉 ≤C ‖ f j ‖∞≤C′,

it follows that (13) holds.
Conversely, suppose that (14) holds. Then

‖∑
j

∑
λ∈Λ j

cλ ψλ ‖1≤∑
j

∑
λ∈Λ j

|cλ | ‖ ψλ ‖1≤C∑
j

∑
λ∈Λ j

|cλ |2−d j < +∞.

So that the wavelet series of f converges normally in L1, so that f ∈ L1.

Using a wavelet formula for the obtention of the scaling function has additional
advantages. Up to now, we implicitly assumed that images are functions (or perhaps
distributions) defined on R2 (or a subset of R2 such as a square or a rectangle). Of
course, this is an idealization that we used because it is convenient for mathemati-
cal modeling. However, real-life images are sampled and given by a finite array of
numbers (usually of size 1024×1024). This practical remark has an important con-
sequence: The problem that we just raised is ill-posed. Indeed, given any “classical”
space of functions defined on a square, and such an array of numbers, one can find
a function in this space that will have the preassigned values at the corresponding
points of the grid. In other words, paradoxically, any function space could be used.
Let us however show extreme consequences of this simple remark.

Recall that the Fourier transform of a function f (x1,x2) is defined by

f̂ (ξ1,ξ2) =
∫

R2
f (x1,x2)e−i(x1ξ1+x2ξ2)dx1dx2.

One can, for instance, assume that images are band-limited which means that their
Fourier transforms vanish outside a ball centered at 0, and whose radius is propor-
tional to the inverse of the sampling width (according to Shannon’s theorem); note
that this assumption is often made, in particular in deblurring and denoising algo-
rithms. This assumption implies that the model used is composed of C∞ functions;
however it would lead to incompatibilities, for instance if we want to use a realistic
model which includes discontinuites along edges (which, as we saw, is a natural
requirement).

Another commonly met pitfall is that an image is given by grey-levels, and thus
takes values in [0,1]. Therefore, it may seem appropriate to use a modeling by
bounded functions, and this is indeed a classical assumption (note that the “car-
toon model” clearly implies boundedness). We will see that the wavelet techniques
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we introduced allow to discuss this assumption, and show that it is not satisfied for
most images.

The resolution of the paradox we raised in this section requires the use of mul-
tiscale techniques such as the one supplied by wavelet analysis. Let us consider for
instance the last example we mentioned: Starting with a discrete image, given by an
array of 1024×1024 numbers all lying between 0 and 1, how can we decide if it can
be modeled or not by a bounded function? It is clear that, if we consider the image
at only one scale (the finest scale in order to lose no information), then the answer
seems to be affirmative. However, as mentioned earlier, any other space would also
do. One way to solve the difficulty is to consider the image at all the scales available
(in theory, there are 10 of them, since 1024 = 210) and inspect if certain quantities
behave through this range of scales as is the case for a bounded function. If not,
we can give an unexpected negative answer to our problem, but this negative answer
should however be understood as follows:

The image considered is a discretization at a given scale of a “hidden function”
defined on a square (to which we have no access) and, if the scaling properties of
this “hidden function” are, at all scales, the same ones as we observe in the range
of scales available, then it is not bounded.

The recipe in order to settle this point is the following: one uses (12) in order
to determine numerically the value of Hmin

f ,which is done by a regression on a log-
log plot, and using Proposition 1, it follows that, if Hmin

f < 0, then the image is not
bounded, and if Hmin

f > 0, then the image is bounded. Of course, if the numerical
value obtained for Hmin

f is close to 0 (i.e. if 0 is contained in the confidence interval
which can be obtained using statistical methods, see [15, 16]) then the issue remains
unsettled.

The same method holds for the other classical function spaces, as a consequence
of Proposition 1. More generally, it allows to determine if the image belongs to a
given function space As

p, as soon as this space has “close embeddings” with Besov
spaces, see [2, 15]; this means that

∀ε > 0, Bs+ε
p ↪→ As

p ↪→ Bs−ε
p .

This includes for instance Sobolev spaces, Hardy spaces or Triebel-Lozorkin spaces.
Note that, of course, one can consider spaces with non-integer integrability exponent
p and non-integer smoothness index.

5 The leader scaling function

In the mid-eighties, two physicists, U. Frisch and G. Parisi proposed an interpre-
tation of the scaling function in terms of the pointwise Hölder singularities of the
function considered, see [6]; this interpretation had a wide amount of consequences,
see [3, 2] and references therein: It gave a deep insight into the understanding of the
information contained in the scaling function, and it led to the introduction of new
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scaling functions which are better fitted for that purpose. The one we will describe
in this section is the only one which meets the two following requirements: Its math-
ematical properties are well understood and its numerical implementation is easy, in
any space dimension, see [1, 8].

We start by recalling the mathematical definitions related to pointwise Hölder
regularity.

Definition 1. Let f be a bounded function Rd → R, x0 ∈ Rd and let α ≥ 0; f
belongs to Cα(x0) if there exist C > 0 and a polynomial P of degree less than α

such that
| f (x)−P(x− x0)| ≤C|x− x0|α .

The Hölder exponent of f at x0 is

h f (x0) = sup{α : f ∈Cα(x0)}.

The isohölder sets are

EH = {x0 : h f (x0) = H}.

Note that Hölder exponents met in signal processing often lie between 0 and 1, in
which case the Taylor polynomial P(x− x0) boils down to f (x0) and the definition
of the Hölder exponent means that, heuristically,

| f (x)− f (x0)| ∼ |x− x0|h f (x0).

U. Frisch and G. Parisi suggested that the scaling functions yield information
concerning sizes of the isohölder sets. These sizes are measured with the help of
Hausdorff dimensions, which we recall.

Definition 2. Let E ⊂Rd and α > 0. Let us introduce the following quantities : Let
n∈N; if L = {li} i∈N is a countable collection of dyadic cubes of width smaller than
2−n which forms a covering of E, then let

H α
n (E,L) = ∑

i∈N
diam(li)α , and H α

n (E) = inf(H α
n (E,L)) ,

where the infimum is taken over all possible coverings of E by dyadic cubes of
scales at least n. The α-dimensional Hausdorff measure of E is

H α(E) = lim
n→+∞

H α
n (E).

The Hausdorff dimension of E is

dim(E) = sup{α > 0 ; H α(E) = +∞}= inf{α > 0 ; H α(E) = 0} .

If E is empty then, by convention, dimH (E) = 0.

If f is bounded, the function H → dim(EH) is called the spectrum of singularities
of f .
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A uniform Hölder function is a function satisfying Hmin
f > 0. In particular, it is

continuous. One can prove the following relationship between the scaling function
of a function and its pointwise Hölder singularities, see [8].

Theorem 1. Let f : Rd → R be a uniform Hölder function. Then

dim(EH)≤ inf
p>p0

(
d +H p−η f (p)

)
,

where p0 is such that η f (p0) = d p0.

We will introduce an alternative scaling function for which a stronger relation-
ship with the spectrum of singularities can be proved. Its definition is similar to
the wavelet scaling function, except that wavelet coefficients have to be replaced by
wavelet leaders, which are defined as follows.

Let λ be a dyadic cube; 3λ is the cube of same center and three times wider. If f
is a bounded function, the wavelet leaders of f are the quantities

dλ = sup
λ ′⊂3λ

|cλ ′ |.

Let x0 ∈ Rd ; λ j(x0) is the dyadic cube of width 2− j which contains x0; and

d j(x0) = dλ j(x0) = sup
λ ′⊂3λ j(x0)

|cλ ′ |.

It is important to require f to be bounded; otherwise, the wavelet leaders of f can
be infinite. The reason for introducing wavelet leaders is that they give information
on the pointwise Hölder regularity of the function. Indeed, one can show that (see
[8] and references therein) if f is a uniform Hölder function, then

h f (x0) = liminf
j→+∞

(
log(d j(x0))

log(2− j)

)
.

Therefore, it is clear that a scaling function constructed with the help of wavelet
leaders will incorporate pointwise smoothness information. For any p ∈ R, let

Tf (p, j) = 2−2 j
∑

λ∈Λ j

|dλ |p.

The leader scaling function is defined by

∀p ∈ R, ζ f (p) = liminf
j→+∞

log(Tf (p, j))
log(2− j)

.

An important property of the leader scaling function is that it is “well defined” for
p < 0, which is not the case for the wavelet scaling function. By “well defined”, we
mean that it has the following robustness properties if the wavelets belong to the
Schwartz class (they still partly hold otherwise, see [2, 8]) :
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• ζ f is independent of the wavelet basis.
• ζ f is invariant under the addition of a C∞ perturbation.
• ζ f is invariant under a C∞ change of variable.

Note that the wavelet scaling function does not possess these properties when p
is negative.

The leader scaling function can also be given a function-space interpretation for
p > 0. Let p ∈ (0,∞); a function f belongs to the Oscillation space Os

p(Rd) if and
only if (Ck) ∈ lp and

∃C, ∀ j, ∑
λ∈Λ j

[
2(s−d/p) jdλ

]p
≤C.

Then
ζ f (p) = sup{s : f ∈O

s/p
p .

Properties of oscillation spaces are investigated in [2, 8].
We denote by L u the Legendre transform of a concave function u, i.e.

(L u)(H) = inf
p∈R

(d +H p−u(p)) .

The leader spectrum of f is defined through a Legendre transform of the leader
scaling function as follows

L f (H) = (L ζ f )(H).

Of course, the leader spectrum of f has the same robustness properties as the leader
scaling function.

Theorem 2. If f is uniform Hölder then,

∀H, dim(EH)≤ L f (H).

We already saw that the cartoon assumption implies that f ∈ BV ∩L∞. We can
actually get a sharper result which yields the exact scaling functions of cartoons for
p > 0.

Lemma 2. Let f be a piecewise smooth function with discontinuities along piece-
wise smooth curves. Then its wavelet and leader scaling functions are given by

∀p > 0, η f (p) = ζ f (p) = 1.

This result gives a numerically sharp and simple way to decide if the cartoon
assumption is satisfied for an image.

Proof: We use compactly supported wavelets, and we first compute the contri-
bution of the wavelet coefficents such that the support of the wavelet intersects the
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curves of dicontinuities. There are ∼ C2 j such coefficients, and the size of these
coefficients are ∼C. It follows that

2−2 j
∑ |cλ |p ∼C2− j.

The contribution of the other wavelet coefficients is negligible, because they decay
faster than 2−A j for any A > 0.

It also follows that the wavelet leaders are of the same order of magnitude. Hence
the lemma holds.

As stated above, we can use wavelet leaders only if the function considered is
bounded, and the mathematical results we mentioned only hold under the slightly
stronger property that the function considered is uniform Hölder. Note however that
we do not expect this assumption to be usually satisfied for images, since it implies
continuity, an assumption which, as already stated, is not realistic in image process-
ing. Recall however that the condition Hmin

f > 0 (which is the definition of uniform
hölderianity) can be practically checked, and inspection of image databases shows
that, indeed, images quite often have negative Hmin

f , which shows the necessity of
a modification of the computation of the leader-based scaling function for practical
purposes.

6 Multifractal formalism for unbounded functions and measures

In order to be able to use the wavelet leader-based method described above, one
has to associate to the image a bounded function, in a one-to-one way in order to
lose no information; furthermore, this association should retain as much as possible
the relevant features of the image. For instance, it should keep the locations of the
Hölder singularities, and transform the wavelet scaling function in a simple way. In
one dimension, the simplest way to solve this problem is to perform an integration
of the function. If one starts with a bounded measure, it is clear that one will obtain
in this way a bounded function; thus, at most two integrations will be sufficient in
order to obtain a uniform Hölder function. In dimension larger than one, the natural
substitute is given by fractional integration, which we now describe. Note that, even
in dimension 1, the tool supplied by fractional integration can prove useful, since it
allows to tune the order of integration, which need not be an integer.

In dimension 1, taking a derivative of order s ∈ N amounts to multiplying the
Fourier transform of the function by (iξ )s; therefore, the inverse operator (integra-
tion of order n) amounts to dividing the Fourier transform by (iξ )s. This may pose a
problem if the Fourier transform does not vanish at the origin, therefore, one prefers
to use the alternative operator, Is defined by

Îs( f ) = (1+ |ξ |2)−s/2 f̂ (ξ );
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indeed, it has the same behavior at high frequencies, but does not have the drawback
we mentioned; another advantage of this definition is that it immediately extends to
non-integer values of s. The operator Is is the fractional integration of order s.

Let us recall a few simple properties of Is which show that it is relevant for our
purpose.

First, the uniform regularity exponent Hmin
f is always shifted exactly by s:

∀ f , Hmin
Is( f ) = Hmin

f + s.

This simple property shows a possible strategy we can follow in order to perform
the multifractal analysis of an image which is not bounded: First determine its ex-
ponent Hmin

f , then, if Hmin
f < 0, perform a fractional integration of order s >−Hmin

f ;
it follows that the uniform regularity exponent of Is( f ) is positive, and therefore its
leader scaling function is well defined. This is essentially the strategy we will fol-
low except for a slight modification which will allow us to eliminate the numerical
computation of the fractional integration.

The pointwise Hölder exponent of a function f is shifted by an amount larger
than or equal to s under a fractional integration of order s:

if s > 0, hIs( f )(x0)≥ h f (x0)+ s.

We usually expect this Hölder exponent to be exactly shifted by s. This is the case
for Hölder singularities of cusp-type, i.e. such that

| f (x)− f (x0)| ∼ |x− x0|α .

However, this is not the case if the singularity has strong oscillations near x0, such
as for the chirp functions

|x− x0|α sin
(

1
|x− x0|β

)
.

We will give a simple sufficient condition under which the function has no chirp and
the fractional integrals satisfy

∀x0, ∀s > 0, hIs( f )(x0) = h f (x0)+ s.

The wavelet scaling function is always tranformed in a simple way under the
action of a fractional integration:

∀p > 0, ηIs( f )(p) = η f (p)+ sp.

Note that such a transformation is easier to check on the Legendre tranforms, since
it implies that

L (η f−s)(H) = L (η f )(H− s)
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(the spectrum is shifted under fractional integration). Such simple formulas do not
exist for the leader scaling function. In particular, the shape of its Legendre trans-
form can be modified (it is not just shifted) under a fractional integration. This is
both an advantage and a drawback; indeed, on one side, it shows that the scaling
functions of all fractional integrals contain non-redundant information. On the other
hand, there is no canonical way to pick a particular order of fractional integration in
order to perform the multifractal analysis.

However, numerically, a fractional integration in a bounded domain is difficult
to realize; In practice, it is equivalent to perform a pseudo-fractional integration
which is numerically simple, and retains the same properties: its scaling functions
and pointwise exponents are the same as for a fractional integral. Let us first define
this transform.

Let f be a function, or a distribution, with wavelet coefficients cλ , and let ψλ be
a given wavelet basis. The pseudo-fractional integral of f of order s, denoted by
Ĩs( f ), is the function whose wavelet coefficients on the same wavelet basis are

c̃λ = 2−s jcλ .

Therefore, one obtains the pseudo-fractional integral by just multiplying the wavelet
coefficients of f by 2−s j.

Theorem 3. The following properties hold for any function or distribution f :

• For any s ∈ R, the wavelet scaling functions of Is( f ) and Ĩs( f ) coincide.
• If s >−Hmin

f then, the leader scaling functions of Is( f ) and Ĩs( f ) coincide.
• If s >−Hmin

f then
∀x0, hIs( f )(x0) = hĨs( f )(x0).

The strategy in order to perform a multifractal analysis of a distribution is: First
determine its uniform Hölder exponent Hmin

f , then compute the leader scaling func-
tion associated to Ĩs( f ) for an s >−Hmin

f , i.e. based on the “pseudo-leaders”

d̃λ = sup
λ ′⊂3λ

2−s j′ |cλ ′ |,

finally, compute the Legendre transform of this scaling function. If the function
considered has cusp singularities only, then we expect that

L (ζĨs( f ))(H) = D f (H− s), (15)

for a certain function D f which is independent of s. This allows to define a “canon-
ical” spectrum D f (H). If it is not the case, then retaining all this collection of trans-
forms for all values of (large enough) s, yields exhaustive information on the oscil-
lations of f .

We now give a simple condition under which a function has only cusp-type sin-
gularities, and therefore (15) holds.
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Fig. 2 Leader scaling function (left) of the image in Fig. 1, obtained with s = 0.5. Superposition
of L (ζĨs )(H) (right), obtained from the image in Fig. 1 with s = 0.5, s = 0.75 and s = 1.

Theorem 4. Let f be a bounded function. Let M(λ ) denote the scale j′ where the
supremum is attained in the definition of the wavelet leaders

dλ = sup
λ ′⊂3λ

|cλ ′ |. (16)

If
sup

λ∈Λ j

(M(λ )− j) = o( j)

then (15 ) holds, and

∀x0, ∀s > 0, hĨs( f )(x0) = h f (x0)+ s.

Proof: Let λ ′(λ ) denote the cube where the supremum is attained in (16), and
denote by j′ its scale. It follows that

j ≤ j′ ≤ j +ω( j), where ω( j) = o( j).

Let
ds

λ
= sup

λ ′⊂3λ

|2−s j′cλ ′ |.

Since s > 0 and j′ ≥ j,

ds
λ
≤ 2−s j sup

λ ′⊂3λ

|cλ ′ |= 2−s jdλ .

Let ε > 0. For j large enough, ω( j)≤ ε j, so that

ds
λ
≥ |2−s j′cλ ′(λ )|= 2−s j′dλ ≥ 2−s( j+ε j)dλ ;

therefore:
2−s( j+ε j)dλ ≤ ds

λ
≤ 2−s jdλ . (17)
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Since

hĨs( f )(x) = liminf
j→+∞

log(ds
λ
)

log(2− j)
,

it follows from (17) that

∀ε > 0, h f (x)+ s ≤ hĨs( f )(x)≤ h f (x)+ s+ ε;

so that the second assertion of the theorem follows.
It also follows from (17) that

∀p > 0, 2−d j2−sp j
∑(dλ )p ≤ 2−d j

∑(ds
λ
)p ≤ 2−d j2−sp( j+ε j)

∑(dλ )p.

Therefore
ζ f (p)+ sp ≤ ζIs( f )(p)≤ ζ f (p)+ sp(1+ ε)

and the first assertion of the theorem follows.
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