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Abstract In this chapter we describe some of the ideas being pursued in sen-
sor scheduling as they apply to radar. A modern phased-array pulse-
Doppler radar has several different parameters available for scheduling:
waveform, beam-shape, beam direction, pulse repetition interval, etc.
Choice of different values for these parameters provides different trans-
mit modes for the radar and these modes in turn provide a variety
of “blurrings” of the image of the scene. The application of ideas in
scheduling to the different possible modes of the transmit phase of such
a radar, has been shown in simulation to improve many aspects of the
performance in tracking and detection of targets. We give a quick in-
troduction to the ideas of radar followed by a discussion of some of the
theoretical ideas involved, and with results of some simulations. We end
with a discussion of the theoretical problem of scheduling the measure-
ments and tracking of a one-dimensional system.
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1. Introduction

A radar system is a way of viewing a scene using electromagnetic
radiation at wavelengths that can be processed using electronic equip-
ment. Since ambient radiation at these wavelengths tends to be low in
power, typically radars provide the illumination as well as the viewing
system. The control of the source of radiation leads to major advan-
tages, as well as some disadvantages. The most important disadvantage
is that the amount of illumination is limited. Most radar systems in
use are monostatic; that is, their illumination source and receiver are
collocated. This has the advantage of shared electronics and antennas.
Much effort is currently going into multistatic radar systems, but in this
chapter we will focus only on monostatic radars. For such radars the en-
ergy returning to the receiver from a scatterer is inversely proportional
to the 4th power of the distance. This means that, to achieve significant
range, radars have to rely on a mix of high transmission power, clever
ideas in the use of waveforms, sophisticated antenna design to focus the
energy, and high performance signal processing.

Our aim in this chapter is to describe ideas being explored for the
control of radar systems. Since we are not assuming any expertise in
radar, we begin with a short description of the ideas of radar theory.
This description focuses on the most commonly used form of the tech-
nology, namely a pulse-Doppler radar system. After that we dicuss some
of the basic ideas in sensor management and then give results of simula-
tions that show the kind of improvement that the use of sensor schedul-
ing might produce. We have focused on work we have been associated
with, and have omitted much excellent work of other workers in this
burgeoning subject. Finally we discuss a theoretical problem in sensor
management.

2. Radar Fundamentals

In this first section we discuss the basic ideas in a pulse-Doppler radar
system. Our treatment is brief and focuses on the underlying theory
rather than on the important issues of implementation.

2.1 Ambiguity and Radar

Illumination of the scene is provided by a signal that is emitted from
the radar system. This signal is usually a waveform that is relatively
slowly varying superimposed on a rapidly oscillating sinusoidal carrier.
Thus it can be expressed as

s(t) = w(t). cos(2πfct). (1)
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Here w(t) is the slowly varying waveform, and fc is the carrier frequency.
It is important to make the rather obvious observation at this stage
that all signals transmitted and received are real-valued. However, it is
possible to represent complex waveforms in such a way that they can be
transmitted. Thus for a complex waveform w(t) we transmit the signal

s(t) = (<w(t)). cos(2πfct) − (=w(t)). sin(2πfct). (2)

On return, the “in-phase” or I component can be separated from the
“quadrature” or Q component by demodulation against cos(2π(fct)) and
sin(2πfct)) respectively. Much of the theory of radar processing takes
place in the complex domain. It is convenient, and a powerful theoretical
device, to replace the signal (2) by its complex version:

sc(t) = w(t)). exp(2πifct), (3)

so that s(t) = <
(

sc(t)
)

. The carrier is often in the range 1–30GHz. The
waveform will typically occupy a bandwidth that is less than 1/10 of
that.

The superposition principle allows us to assume just a single scatterer
in the view of the radar. The transmitted signal hits this scatterer
whose distance (we measure distance and time in the same units) from
the (collocated) transmitter and receiver is r. Assume that the scatterer
is stationary. The return signal will be a delayed version of the original,
delayed by the total round trip time from the radar to the scatterer.
Specifically the signal voltage at the antenna of the receiver is

su(t) = As(t − 2r) (4)

where A represents the overall attenuation and includes a phase change
(so is complex) due to reflection.

In the receiver some noise is added (“receiver noise”), arising from
thermal activity generated within the components of the receiver. For
distant scatterers the return signal is often so weak that this thermal
noise can become a significant issue. We write

sr(t) = su(t) + N(t),

where N(t) is a white Gaussian process, for the signal after the initial
stages of the receiver. Thermal noise is to a good approximation white
and Gaussian.

Now we consider the possibility that the target is moving relative to
the radar. The scattered waveform is modified by the Doppler effect. If
this is done correctly it results in a “time dilation” of the return signal, so
that, if the target has a radial velocity v, the return signal su(t) becomes

su(t) = As(αt − 2r),
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where

α =
(1 − v

c )

(1 + v
c )

.

When v is much smaller than c this is approximated by α = (1− 2v/c).
A further approximation is possible if, as is usually the case, the signal is
“narrow band”; that is, if its (Fourier) spectrum is essentially in a range
(fc − δ, fc + δ) and its reflection in the origin, where δ is small compared
to fc. For most radar applications, this is a reasonable assumption since
the signal modulating the carrier will have relatively low bandwidth. In
this case, the return signal is approximated by shifting the frequency of
the return from a stationary target at the same range by fd = (2v/c)fc,
the so-called “Doppler frequency”. This is best written in terms of the
complex signal

su(t) = <
(

w(t −
2R

c
).e2πifc(1−2v/c)(t− 2R

c
)
)

(5)

This equation is the standard one used in most radar calculations.
When the return is received, it is demodulated to strip off the carrier

frequency. Typically, the return is “mixed with”, that is multiplied
by, cos 2πft and then low-pass filtered to eliminate the high frequency
component of the mixed signal. This is the demodulation phase refered
to earlier.

In the complex domain, the demodulated signal is as described in (5).
The signal is then filtered against another chosen signal v(t), often v

is chosen to be the same as w (match-filtering); that is, it is correlated
with that signal, resulting in

Aw,v(x, f) =

∫

R

v(t)∗w(t − x)e2πift dt, (6)

after a slight change of variable.
A general scene may be regarded as a function of range and Doppler,

corresponding to a “reflectivity” assignment ρ(t, f) to each value of range
and Doppler. We include in this description of the scene the attenuation
due to range of the scatterer. The superposition principle says that the
resulting return is a convolution in range and Dopper of the scene with
the ambiguity:

R(τ, f) =

∫∫

R2

ρ(τ ′, f ′)Aw,v(τ − τ ′, f − f ′) dτ ′df ′ (7)

By varying the waveform, we are able to vary the shape of the am-
biguity and thereby the kind of blurring that the radar process does to
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the scene. Evidently it would be best if there were no blurring, that
is, if the ambiguity were a “thumbtack” with a spike at the origin and
zero elsewhere. Unfortunately, there is a fundamental limitation that
prevents this. It is known in various forms, in particular, as (one form
of) the Heisenberg Uncertainty Principle, and as Moyal’s Identity. In
the latter formulation, it is expressed as follows:

||Aw,v||L2(R2) = ||w||L2(R).||v||L2(R) (8)

It states that the L2 norm of the ambiguity function as a function
on R2 is the product of the L2 norms of the transmit signal and the
filtering signal as functions on R. Since signals have finite energy, the
ambiguity must be an L2 function, and have a lower bound on its L2

norm. Accordingly a “thumbtack” is impossible. The range-Doppler
must be “blurred” by the imaging process in radar.

2.2 Beam-forming

In addition to finding range and Doppler, a radar usually needs to
estimate the direction of a target. This is done by pointing the illumi-
nation in particular directions and “filtering” the return according to
which direction it comes from.

The classical way to form a beam in radar is to use a paraboloidal
dish. The beam is pointed in a given direction by mechanically steering
the dish. Both the transmit and return beams are “spatially filtered” by
the dish. Returns from particular directions are emphasized and those
from other directions are attenuated. More and more this approach is
being replaced by an electronically steered array antenna. Typically,
this is comprised of a multiplicity of small antenna elements to which
the transmit signal is fed. By varying the phase of the signal across the
array it is possible to steer the direction of the beam, and by varying the
voltage applied to each element it is possible to reshape the beam. The
direction and the shape of the transmit beam can be varied rapidly. This
is particularly important in a situation where the radar is performing
multiple functions such as tracking several targets while detecting new
targets. As a receive antenna, such a system can simultaneously steer
many beams by means of the processing of the returns at each antenna
element.

In neither the mechanical nor the electronic approaches is the beam
perfectly sharp. This is inevitable since the aperture of the system is
finite in extent. In the case of the electronic array, this problem is
compounded by the fact that the array has discrete elements, rather
than a continuum. However, in the latter case it is controllable. As
a result of this imperfection, again the scene is “blurred”; in this case
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the directions of the scatterers are averaged over the response of the
antenna. In the case of an electronic array, it is possible to change the
“blurring” as well as beam-direction quickly. Thus in a phased-array
system there is scope for the control of the illumination.

2.3 Doppler Processing and Pulse Compression

One way of copying with the ambiguity trade-off problem forced by
Moyal’s Identity (8) is to use a technique called Doppler processing.
There are several issues associated with the accurate measurement of
range and Doppler:

A short pulse gives more accurate range measurement;

A longer pulse has more energy in it, and the more energy used in
illumination the more will be scattered back;

The effect of the Doppler of typical targets on short pulses is es-
sentially trivial.

An imperfect solution to the problems arising from the contradictory (to
Moyal’s Identity) requirements of good range and Doppler measurement
is adopted by a pulse-Doppler radar. The solution involves the following
mechanisms:

DP-1) Pulses of a length short enough to incur relatively little Doppler
effect but long enough to individually give relatively high energy
on target are chosen;

DP-2) These pulses are chosen in such a way that their auto-correlations
are close to a spike with small side-lobes;

DP-3) A number of such pulses are transmitted with long gaps between
them to give time for the Doppler to have effect across the whole
sequence of pulses.

The effect of DP-2) is to produce a virtual pulse whose length is the
width of the central lobe. Of course, this is never completely perfect
since it does have side-lobes, but waveforms have been described for
which the performance in this respect is excellent. DP-3) means that
the Doppler frequency shift is being sampled at a discrete set of time
points. If the sampling rate is faster than the Nyquist of the Doppler
frequency shift, then the Doppler can be unambiguously extracted.

One might ask why Moyal’s Identity does not cause problems here.
Of course it does. Whatever the sampling rate, there are Doppler fre-
quencies that are ambiguous and correspond to side-lobes in the overall
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ambiguity of the series of pulses. It is important to choose the sampling
rate to be high enough that this does not happen for targets of interest.
On the other hand, if the sampling rate is high then returns of earlier
pulses from distant targets can appear after later pulses have been trans-
mitted. This range-aliasing also corresponds to side-lobes in the overall
ambiguity. Thus Doppler processing also suffers the same problems as
a single waveform. However, it provides a mechanism for control of the
position of the side-lobes to best fit the context. Moreover, it is possible
to view the sampling rate, as well as the number of pulses used in this
processing, as control parameters in scheduling a sensor.

3. Sensor Management — Overview

Conventional radars typically employ the same waveform and beam-
pattern over many pulses. The received signal can be, and often is,
processed in several ways to extract different kinds of information, or in
response to knowledge gained from the environment, but on the trans-
mit side, the mode of operation of the radar system is essentially static.
In these systems it may be possible to modify the waveform used of-
fline but not during the processing period. Recent advances in hardware
have made the possibility of changing transmit modes, and indeed most
parameters quickly; if not between pulses then at least on a scale of a
few tens of pulses. Moreover, as in the case of the receive-side adap-
tivity, these modifications can take into account the knowledge of the
environment gained about the scene.

The key features of a managed sensor system are that it senses the
environment and chooses an appropriate waveform, beam-pattern, pulse
repetition interval (PRI), etc (collectively called the sensor mode) to best
extract the required information. Any such system must have, at least,
the following components in addition to the basic sensor and ancillary
components:

SM-1) A method of estimating the current (that is at the time of trans-
mission of next pulse) state of the environment. This is done on
the basis of prior measurements together with some model of the
dynamics of the environment. It may be important to estimate
not only the scatterers of interest (targets) but also those that
are not of interest (clutter), since knowledge of the latter may be
useful for determination of an optimal radar mode.

SM-2) A measure of effectiveness of each potential sensor mode. This
should be a function of both the mode (as defined above) and
of the environment, or at least the estimate of it mentioned in
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SM-1). Most importantly, it should be based on the operational
problem at hand.

SM-3) A library of modes from which the optimal mode is chosen. This
might be just a finite library, but also might be an infinite pa-
rameterized family of, say, waveforms.

SM-4) A method for finding the optimal choice of mode over one or
more epochs, based on the measure of effectiveness.

We note that, at its simplest, the optimization will be on an epoch by
epoch basis (the so-called “greedy” or “myopic” approach). In this case,
the mode is chosen just to optimize for the next epoch and defer con-
sideration of future behavior. A more sophisticated system would look
several epochs ahead in applying the measure of effectiveness, though
it would also update the scheduling policy on an epoch by epoch ba-
sis. Such an approach is, a priori, very computer intensive, and much
work is needed to develop shortcuts to calculation of the optimal policy.
Sometimes it may be appropriate to choose to measure the effectiveness
of a policy only at the last epoch of application of that policy.

It should be noted that this regime allows the possibility that the
sensor is spread over several platforms and/or is comprised of several
physically different sensors within each platform. It can encompass tra-
jectory control for platforms and even control of data rates in connecting
platforms to each other and to a central node. In each case the system
can be viewed as consisting of many real or virtual sensors, where a vir-
tual sensor can be a particular mode of a sensor, a position of a platform,
a particular bit of a measurement made by a sensor, etc. Thus the sensor
management problem may seen in all of these cases as one of choosing
to switch between many different sensors, where the choice is made on
the basis on knowledge of the environment. This view is schematically
represented in Figure 1.

The ultimate goal of research in this area is to “close the loop” in
radar signal processing by producing algorithms for scheduling of beam-
directions, beam-shapes, waveforms and other radar modalities so as to
optimally extract information from the environment (targets and clut-
ter). Several sub-objectives contribute to this. As we have already said,
in order to choose the best modality for a given radar environment, an
estimate of that environment needs to be available at the time of making
the selection, a method of assessing the effectiveness of a given modality
in a given environment is required, as well as an optimal scheduling algo-
rithm to make the selection of an optimal modality for each of a number
of future epochs. Because of space constraints, we limit our discussion to
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Figure 1. Schematic of Sensor Management

simulations for just one- and two-step ahead scheduling. Before proceed-
ing to the simulation work, we discuss the theory of waveform libraries.
The choice of the library of modes between which the sensor can switch
is, of course, an important consideration in the development of scheduled
radar systems.

4. Theory of Waveform Libraries

With the advent of radars capable of waveform agility, the design of
optimal waveform libraries comes into question. The purpose of this sec-
tion is to consider the design of such waveform libraries for radar tracking
applications, from an information theoretic point of view. We note that
waveform libraries will depend in general on the specific applications in
which the systems are to be used. Airborne radars will require differ-
ent libraries from ship-borne ones. Radars used in a tracking mode will
require different optimal libraries than radars in a surveillance mode.

The idea of selecting waveforms adaptively based on tracking consid-
erations was introduced in the papers of Kershaw and Evans [3, 4]. There
they used a cost function based on the predicted track error covariance
matrix.

In designing or improving a waveform library certain questions arise.
Firstly it is important to establish the measure of effectiveness (MoE)
for individual waveforms (cost function) and then to extend this to an
MoE for the library. If a particular set of waveforms is added, will this
improve the library in these terms and, on the other hand, how much
will removing some waveforms reduce the utility of the library? It is the
purpose of this chapter to develop an information theoretic framework
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for addressing such questions, at least from the target tracking point of
view and to look at its application to specific waveform collections.

We use the basic sensor model proposed in [4]. While this has limita-
tions, it is simple and therefore useful as a starting point for discussion
of the problem. In this model, the sensor is characterized by a measure-
ment noise covariance matrix which is waveform dependent

Rφ = TTJ−1
φ T, (9)

where Jφ is the Fisher information matrix corresponding to the measure-
ment using waveform φ ∈ L2(R), and T is the transformation matrix
between the time delay and Doppler measured by the receiver and the
target range and velocity. The Fisher information matrix is given by
an expression involving the normalized second order time and frequency
moments of the waveform φ. It is also expressible in terms of the Hessian
of the squared absolute value of the ambiguity function of the waveform
at the origin of the range-Doppler plane. This calculation is done in [6].

It should be pointed out that the use of the Fisher matrix here is an
approximation. It really corresponds to the Cramér-Rao lower bound
on the estimator for the target from this measurement. It can be shown
that the estimator here is asymptotically efficient (see[2], pp. 38–39)
in that the covariance matrix approaches the Cramér-Rao lower bound
over a large number of measurements (loc. cit.).

We note that the Hessian equivalence means that the Fisher matrix
expresses purely local information about the ambiguity function at its
peak. It says nothing about the structure of the ambiguity away from
that peak. This local nature of the Fisher matrix is of some concern
when considering its use in expressing a measure of effectiveness for a
waveform. It can be argued, however, that this is a reasonable approach
for tracking (where the return is “gated” in the vicinity of the predicted
target position and Doppler) and in relatively low clutter situations. In a
detection problem in a highly cluttered environment, the side-lobes will
play a significant role and alternative measures of effectiveness ought to
be considered.

In the context of our discussion in this chapter, we represent the
measurement obtained using the waveform φ as a Gaussian measurement
with covariance Rφ. The current state of the system is represented by the
state covariance matrix P. Of course, the estimated position and velocity
of the target is also important for the tracking function of the radar, but
in this context they play no role in the choice of waveforms. In a clutter
rich (and varying) scenario, the estimate of the target parameters will
clearly play a more important role. The expected information obtained
from a measurement with such a waveform, given the current state of
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knowledge of the target, is

I(X;Y ) = log det(I + R−1
φ P). (10)

This is the mutual information between the target variable (range and
Doppler) X and the processed (with a matched filter) radar return Y ,
resulting from the use of the waveform φ. I is the identity matrix. We
use this expected information as the MoE of the waveform φ in this
context. The more information we extract from the situation the better.

We assume a knowledge of the possible state covariances P generated
by the tracking system. This knowledge is statistical and is represented
by a probability distribution F (P) over the space of all positive definite
matrices.

We define the utility of a waveform library L ⊂ L2(R), with respect
to a distribution F , to be

GF (L) =

∫

P>0
max
φ∈L

log det(I + R−1
φ P) dF (P). (11)

Thus we have assumed that the optimal waveform is chosen in accor-
dance with the MoE defined in equation (10) and have averaged this over
all possible current states, as represented by the covariance matrices P

and in accordance with their distribution F (P).
We consider two libraries L and L′ to be weakly equivalent, with re-

spect to the distribution F , if GF (L) = GF (L′), and strongly equivalent

if GF (L) = GF (L′) for all F .
In what follows we will work in receiver coordinates, i.e., treat T

above as I. This amounts to a change in parameterization of the positive
definite matrices in the integral in (11).

Having defined the utility of a waveform library we go on to investigate
the utilities of a few libraries. Specifically, we consider libraries generated
from a fixed waveform φ0, usually an unmodulated pulse of some fixed
duration, by symplectic transformations. Such transformations form a
group of unitary transformations on L2(R) and include linear frequency
modulation as well as the Fractional Fourier transform (FrFT) in a sense
that we shall make clear.

Under such transformations φ = Uφ0, the ambiguity function of the
waveform φ0, is modified according to the following equation.

|Aφ(x)| = |Aφ0
(S−1x)| (12)

where x = (t, f)T and det(S) = 1, and φ0 ranges over all members
of L2(R). Indeed, a reasonable definition of symplectic transformation

in this context is any unitary operator on L2(R) that transforms the
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ambiguity function according to equation (12). There is a technical
problem here that requires resolution. A waveform is not determined by
the absolute value of its ambiguity. Thus there may be more than one
transformation S under which equation (12) is valid. It turns out that
in this case the the transformation is unique.

It is not hard to see that such transformations form a group. Suppose
that U1 and U2 are symplectic in this sense and S1 and S2 correspond
to them. Then

|AU1U2φ0
(x)| = |AU2φ0

(S−1
1 x)| = |Aφ0

(S−1
2 S−1

1 x)| = |Aφ0
((S1S2)

−1x)|.
(13)

Furthermore, under symplectic transformations, it is relatively easy to
show, using the Hessian formula for calculating the Fisher information
matrix, that the measurement covariance matrix transforms as

RUφ0
= STRφ0

S (14)

when S is associated with U .
An LFM (“chirp”) waveform library consists of

Lchirp = {exp(iλt2/2)φ0 | λmin ≤ λ ≤ λmax} (15)

where φ0 is an unmodulated pulse, λmin and λmax are the minimum and
maximum chirp rates supported by the radar, and t is the (unbounded)
operator on L2(R) defined by

tφ(t) = tφ(t). (16)

It follows that

(exp(iλt2/2)φ)(t) = exp(iλt2/2)φ(t). (17)

For this library the corresponding measurement covariance matrices are
given by (14) with

S(λ) =

(

1 0
λ 1

)

. (18)

It is relatively easy to see that

L′
chirp = {exp(iλmint

2/2)φ0, exp(iλmaxt
2/2)φ0} (19)

is strongly equivalent to Lchirp. That is, we do just as well if we keep only
the LFMs with the minimum and maximum rates. In range-Doppler co-
ordinates, the error covariance matrix for each LFM can be represented
by

R(λ) = S(λ)T R0SS(λ), (20)
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where R0 is a diagonal matrix with ρ1, ρ2 on the diagonal; that is, a
covariance matrix for the rectangular pulse [1, 4]. Direct computations
give the following expression for the mutual information I(X;Y ):

I(X;Y ) = 4
P11

ρ2

λ2

4
− 4

P12

ρ2

λ

2
+

|P |

|R|
+ 1 +

P11

ρ1
+

P22

ρ2
. (21)

This is a quadratic in λ with positive second derivative since P and R
are both positive definite, and therefore achieves its maximum at the
end points, i.e at maximum or minimum allowed sweep rate.

Another way to create a waveform library is to take an ambiguity
and rotate it. In this case, the new waveform is a fractional Fourier
transform of the old one.

LFrFT = {exp(iθ(t2 + f2)/2)φ0 | θ ∈ Θ}, (22)

where the set Θ ⊂ [0, 2π] can be chosen so as not to violate the band-
width constraints of the radar, and f is the operator on L2(R) defined
by

fφ(t) = iφ′(t). (23)

For this library the corresponding transformation in range-Doppler space
is given by the rotation

R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

. (24)

It is possible to consider combinations of the rotation and chirping
transformations applied to an unmodulated waveform φ0; that is, we
consider all transformations of the following form:

LFrFT = {exp(iθ(t2 + f2)/2) exp(iλt2/2)φ0 | λmin ≤ λ ≤ λmax, θ ∈ Θ}
(25)

where the set Θ is chosen so as not to violate the bandwidth constraints
of the radar, and f is the operator on L2(R) defined by

fφ(t) = iφ′(t), (26)

where ·′ denotes differentiation in time. Note that f and t commute up
to an extra additive term (the “canonical commutation relations”). To
be precise,

[t, f ] = tf − ft = −iI. (27)

For this library the corresponding measurement covariance matrices
are given by (14) with

S(θ, λ) =

(

cos θ − sin θ
sin θ cos θ

)(

1 0
λ 1

)

. (28)
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In the case of a finite number of waveforms in the library, we observe
that the utility of the rotation library improves with the number of
waveforms in the library. We can show that there exists a unique θ which
maximizes the mutual information I(X;Y ) and, in a similar fashion to
the pure chirp library case,

L′
FrFT-chirp =

{exp(iθ(t2 + f2)/2) exp(iλt2/2)φ0 | λ ∈ {λmin, λmax}, θ ∈ Θ} (29)

is strongly equivalent to LFrFT-chirp.

5. Sensor scheduling simulations and result

Here we discuss simulations for sensor scheduling problems over up
to two epochs into the future. The difficulties here reside in the design
of the cost function and tracking of the scene. Our aim here is to show
that sensor scheduling does, at least in simulation, achieve performance
improvement.

Several aspects are common to all of the simulations described here.
The scenarios all involve multiple maneuvering and crossing targets in
simulated clutter. The simulated targets move according to an interact-
ing multiple models (IMM) method; that is, at each epoch one of a finite
number of dynamical models is chosen. The choice changes from epoch
to epoch according to a Markov chain. Each of the dynamical models is
linear. Process noise is, in each case, white and independent from epoch
to epoch. Measurement is made using a waveform from a small finite
library of waveforms, that we specify in each case.

A brief description of the tracking and waveform scheduling aspects
of the scheme is as follows:

Tracking Since we are tracking multiple maneuvering targets, we use an
iterated multiple modes (IMM) based tracker. This assumes that
each target assumes at each epoch one of a finite number of dynam-
ical models, such as “constant velocity”, “constant linear acceler-
ation”, “fast left turn”, etc, and implements a filter for each such
dynamical model. As is normal in IMM the dynamical model is as-
sumed to evolve by means of a Markov chain. We remark that the
models and transition matrices are not identical with those used
in constructing the scene. All noise on the processes is assumed
Gaussian and independent between epochs. Multiple targets and
clutter are addressed by an integrated probabilistic data associa-
tion tracker, specifically the LMIPDA-IMM algorithm described
in [5]. This is a recursive algorithm combining a multi-target data
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association algorithm (LMIPDA) with manoeuvring target state
estimation implemented using IMM. Each track carries along with
it a “probability of track existence” which is updated at each epoch
along with the track. In addition the probability of each dynamical
model is updated from the measurements.

Waveform Scheduling The choice of measurement is made using the
control variable n(k). In fact two choices are made at each epoch,
the target to be measured and the waveform used. The waveforms
impinge on the measurement process through the covariance ma-
trix of the noise ωt

n(k). In this model, the sensor is characterised
by a measurement noise covariance matrix which is waveform de-
pendent

Rφ = T T J−1
φ T, (30)

where Jφ is the Fisher information matrix corresponding to the
measurement using waveform φ and T is the transformation ma-
trix between the time delay and Doppler measured by the receiver
and the target range and velocity. It is assumed that N different
measurement modes are available for each target, each given by a
measurement matrix Ht

n n = 1, 2 . . . , N .

In order to determine which target to measure and which waveform to
use, for each existing target and each waveform the track error covariance
P t

k−1|k−1 is propagated forward using the Kalman update equations. In

the absence of measurements, as will be the case in the study of revisit
times, the best we can do is to use current knowledge to predict forward
and update the covariance matrix, dynamic model pdf and probability
of track existence. The tracking and scheduling algorithms now becomes
as follows:

IMM mixing as in [5] is conducted as usual;

Forward prediction is then performed separately for each dynami-
cal model.

Covariance update: this is normally done with the data, but since
we are interested in choosing the best sensor mode at this stage
the following calculations are required. If the target does not exists
there will be no measurements originating from the target and the
error covariance matrix is equal to the a priori covariance matrix,
if the target exists, is detected, and the measurement is received
then the error covariance matrix is updated using the Kalman
equation.



16

The dynamic model and track existence pdfs are updated. If the
target does not exist it produces no measurement; if it does and
is detected the expected measurement pdf,dynamical model and
track existence pdfs are using the LMIPDA-IMM filter.

The next step is to combine the estimates for all dynamics models
j = 1, . . . ,M into one, using the standard “IMM combination” for-
mulae [5]. We refer the interested reader to this paper for details.

5.1 One- and Two-Step Ahead Scheduling

Our first aim is to do a simple comparison of one-step and two-step
scheduling of waveforms and other radar parameters. The modes of the
radar system (beam-direction and waveform) are chosen for the next one
or two PRIs based on the predicted scene over that time. We note that
in the two-step case the choice of radar mode is updated on a PRI by
PRI basis. A comparison between one and two-step ahead scheduling is
an important issue, since if it is shown that the improvement achieved
by two step ahead optimal scheduling over just one-step ahead schedul-
ing is slight, it is reasonable to guess that one-step ahead scheduling is
for practical purposes optimal. Since multi-step scheduling is inherently
much more computationally intensive, it is best avoided if it results in
only a marginal improvement. We emphasize that, of course, results of
this kind are very likely to be scenario dependent unless there is some
inherently mathematical reason why optimal multi-step ahead schedul-
ing is achievable by a myopic approach. That would appear unlikely.
We emphasize too that this work has been done on a simulator. The
structure of the scene is highly artificial and the clutter models very
simplistic.

We have compared one-step and two-step ahead scheduling using two
performance measures. The first is the root mean square error of the
track estimation; this is a fairly obvious measure of the performance
of the tracker. The second measure was the number of track updates.
Since the sensor is managed in such a way that track updating is done
only when the predicted track error exceeds a threshold, this also gives
a measure of how far the estimation process is diverging from the actual
target state.

We refrain here from giving detailed descriptions of the experiments.
Their outcome suggests that, in the presence of clutter, the tracking
performance can be improved with multiple step ahead scheduling as
opposed to one step ahead. The results are represented in Figures 2
and 3. One observes that for two steps ahead the tracking accuracy is
improved, albeit slightly, while the number of times the track had to be
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Figure 2. Root Mean Square Error (RMSE)

Figure 3. The number of track updates
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updated is reduced. In both cases the improvement is not large, and is
worse immediately after the aircraft has maneuvered. Once the aircraft
has settled back into a linear model again the two-step ahead scheduler
does better.

5.2 Scheduling of Waveform Libraries

The next series of experiments is focused on how the choice of wave-
form libraries affect the problem of tracking of maneuvering targets.

As in the previous experiments, at each epoch we would like to se-
lect a waveform (or really the error covariance matrix associated with a
measurement using this waveform) so that the measurement will mini-
mize the uncertainty of the dynamic model of the target. We study two
possible measures: entropy of the a posteriori pdf of the models and
mutual information between the dynamic model pdf and measurement
history. Both of these involve making modifications to the LMIPDA-
IMM approach that are described in [5]. Since we want to minimize the
entropy before taking the measurement, we need to consider the expected

value of the cost. To do this we replace the measurement z in the IMM
equations by its expected value. In the case of the second measure, for
a model we have

I(Γ;Z) = −
M
∑

γ=1

P{γ} log P{γ} +

∫

P{z}
M
∑

γ=1

P{γ|z} log P{γ|z}dz,

(31)
where P{γ} is the a priori probability of the model γ ∈ Γ, and z is the
measurement.

Simulations were performed for both cost functions. Target trajecto-
ries in range and Doppler were randomly created. The maneuvers for
the trajectories were generated using a given transition probability ma-
trix. We identified four maneuvers: 0 acceleration; 10m/s2 acceleration;
50m/s2 acceleration; −10m/s2 acceleration.

In the experiments we considered rotation-LFM waveform libraries
with 1 waveform (max upsweep chirp), 2 waveforms (max upsweep and
max downsweep chirps), and 6 waveforms (maximum upsweep, max-
imum downsweep chirps and 2 rotations 0.2π and 0.4π as defined in
equation (22) to the left for the maximum upsweep and maximum down-
sweep chirps).

The results are presented in Figures 4, 5, 6, and 7. Clearly, for either
cost function, waveform scheduling using the six-waveform library out-
performs waveform scheduling using the two-waveform library, which in
turn outperforms no scheduling (one waveform) in both estimation ac-
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curacy (Figures 4 and 6) and correct identification of target maneuver
(Figures 5 and 7).

5.3 Re-visit Time Scheduling

Finally in this section on simulations, we briefly describe a project
that includes many of the ideas we have presented already. The crucial
problem is to use scheduling to reduce the amount of time spent on
tracking known targets while retaining a given level of track accuracy.
By doing this we permit the sensor to spend more time in surveillance
for new targets.

We postulate a radar system tracking T targets where T is a random
variable 0 ≤ T ≤ T0 and the tth target is in state xt(k) at epoch k. In
addition the radar undertakes surveillance to discover new targets. This
surveillance is assumed to require a certain length of time, say Tscan

within every interval of length Ttotal. The remainder of the time is spent
measuring targets being tracked. We aim to schedule revisit times to
targets within these constraints.

At each epoch a target track and a beam direction have to be selected.
The scheduler has a list ∆ = {δ1, δ2, . . . , δK} of “revisit intervals”. Each
of the numbers δk is a number of epochs representing the possible times
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Figure 7. Cost Function and Correct Maneuver Identification for Mutual Informa-
tion Cost

between measurements of any of the existing targets. It is assumed
for the purposes of scheduling and tracking that during any of these
revisit intervals the target dynamics do not change, though the simulator
permits target maneuvers on an epoch by epoch basis.

The LMIPDA-IMM calculations are performed for all combinations of
revisit times in ∆ and waveforms in the library. Evidently then the num-
ber of combinations grows exponentially in the number of steps ahead,
and soon becomes impractical for implementation. Having obtained the
error covariance matrix for all possible combinations of sensor modes,
the optimal sensor mode (waveform) is then chosen for each target to
be the one which gives the longest re-visit time, while constraining the
absolute value of the determinant of the error covariance matrix to be
smaller than the prescribed upper limit K. In other words, our objective
is

φ, δ = arg max ∆, subject to |det(Pk|k)| ≤ K. (32)

Scheduling is then done to permit a full scan over the prescribed scan
period while also satisfying the constraints imposed by the revisit times
obtained by the sensor scheduler. Once a target is measured, its revisit
time is re-calculated.
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We note that for many manoeuvring targets there may be no solution
to the scheduling problem that satisfies the constraints. However, we
have not been able to simulate a situation in which this happens.

We have, on the other hand done simple simulations for the case
of one-step ahead and two-step ahead scheduling. In the latter case,
the revisit times and waveforms are calculated while the target states
are propagated forward over two measurements, with the cost function
being the absolute value of the determinant of the track error covariance
after the second measurement. Only the first of these measurements is
done before the revisit calculation is done again for that target, so that
the second may never be implemented.

Simulations were performed to compare the effects of no scheduling
with random choice of waveform against one-step and two-step ahead
beam and waveform scheduling as described in the last section. All three
simulations were performed 100 times on the same scenario. In the first
case, measurements were taken at each scan with no further measure-
ments beyond the scan measurements permitted. The waveforms were
chosen at random from the three waveforms in the library. The simulated
scene corresponded to a surveillance area of 15km by 15km contained two
maneuvering land targets in stationary land clutter which had small ran-
dom Doppler to simulate movement of vegetation in wind. The number
of clutter measurements at each epoch was generated by samples from
a Poisson distribution with mean ∼ 5 per scan per sq.km. Target mea-
surements were produced with probability of detection 0.9. The target
state xt consisted of target range, target range rate and target azimuth.
The targets were performing the following maneuvers: constant velocity,
constant acceleration, constant deceleration and coordinated turns with
constant angular velocity. In these experiments we used the waveform
library consisting of three waveforms: an up-sweep chirp, a down-sweep
chirp and an unmodulated pulse. In the scheduling cases, surveillance
time used approximately 80 percent of each scan period, the remaining
20% being allocated as described above to the maintenance of tracks of
existing targets.

The outcome of experiments suggests that in the presence of clutter
tracking performance can be improved with scheduling and even more
with multiple step ahead scheduling as opposed to one step ahead. The
results are represented in Figure 8. It should be observed in Figure 8
that RMS error was considerably worse especially during the early part
of the simulation for the unscheduled case. In fact the RMS error in the
unscheduled case is 5larger immediately after significant manoeuvres as
can be expected. Of course, in this case the revisit time is fixed and is
not plotted in the second subplot. One observes, that, for the two-step
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Figure 8. Root Mean Square Error (RMSE) and Revisit Count for one vs. two step
ahead beam and waveform scheduling

ahead case, tracking accuracy is improved (top plots) slightly over the
one-step ahead case but with a significant reduction in revisit times to
maintain those tracks.
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