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Abstract A Space-Based Radar (SBR) is a reconnaissance, surveillance, and tar-
get acquisition system capable of supporting a wide variety of joint mis-
sions and tasks simultaneously, including battle management, command
and control, target detection and tracking, wide area surveillance and
attack operations. SBR also supports traditional intelligence, surveil-
lance and reconnaissance missions such as indications, warning, and
assessment. These mission areas cover the strategic, operational, and
tactical levels of operations of interest. SBR systems are also used for
earth science projects. However, an SBR system, by virtue of its mo-
tion, generates a Doppler frequency component to the clutter return
from any point on the earth as a function of the SBR-earth geometry.
The effect of earth’s rotation around its own axis is shown to add an
additional component to this Doppler frequency. The overall effect of
the earth’s rotation on the Doppler turns out to be two correction fac-
tors in terms of a crab angle affecting the azimuth angle, and a crab
magnitude scaling the Doppler magnitude of the clutter patch. Inter-
estingly both factors depend only on the SBR orbit inclination and its
latitude and not on the specific location of the clutter patch of interest.
It is also shown that earth’s rotation together with the range foldover
phenomenon inherent in such systems; significantly degrade the clut-
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ter suppression performance of adaptive processing algorithms. In this
chapter, we provide analytical derivations of these phenomena and their
impact on performance, and suggested ways to remedy for these effects
are shown through computer simulations.

Keywords: SBR; STAP; earth rotation; range ambiguity; crab angle; crab magni-
tude; Doppler dispersion; range dependency; waveform diversity; Doppler
warping.

1. Introduction

SBR because of its height can cover a very large area on earth for in-
telligence, surveillance and monitoring of ground moving targets. Once
launched into orbit, the SBR moves around the earth while the earth
continues to rotate on its own axis. By adjusting the SBR speed and
orbit parameters, it is thus possible to scan various parts of the earth pe-
riodically and collect data. Such an SBR based surveillance system can
be remotely controlled and may require very little human intervention.
As a result, targets of interest can be identified and tracked in greater
detail and/or images can be made with a very high resolution. In SBR
systems, the range foldover phenomenon — clutter returns that corre-
spond to previous/later radar pulses — contributes to the SBR clutter.
Another important phenomenon that affects the clutter data is the effect
of earth’s motion around its own axis. At various points on earth this
contributes differently to Doppler, and the modification to Doppler due
to earth’s rotation will be shown to induce a crab angle and a crab mag-
nitude. These two components are shown to induce Doppler dispersion
that is shown to be range-dependent. This range dependency causes
the secondary data to be non independent and identically distributed
(iid); an assumption that is required by most STAP approaches. The
simultaneous presence of earth rotation and range foldover — a condi-
tion that generally applies — causes performance degradation in most
STAP approaches. To mitigate these effects, we propose to use wave-
form diversity on transmit. Detailed performance analysis and methods
that minimize these effects are given in great detail in this chapter.

2. Geometry

2.1 Radar-Earth Geometry

A space based radar (SBR) located at an orbital height H above its
nadir point has its mainbeam focused to a point of interest D on the
ground located at range R [1]–[4]. In general, the SBR can be in an
orbit that is inclined at an angle to the equator. The inclination of
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Figure 1. Parameters of an SBR pointing its mainbeam to a ground point D.

the SBR orbit is usually given at the point where it crosses the equator
from which its local inclination at other latitudes can be determined.
The range is measured from the nadir point B (that is directly below
the satellite) to the antenna mainbeam footprint on earth (see Fig. 1).
For example, a polar satellite at 506 km above the earth’s surface has a
period of 1.57 hours. While it completes a circle around the earth that
is fixed with respect to the stars, the earth turns through 22.5o or 1/6 of
a revolution about its axis. Thus, every time the space craft crosses the
equator the earth moves 2500 km eastward giving an ‘automatic’ scan
of the surface below to the onboard radar. As a result, the radar is able
to scan the earth in both latitude and longitude by virtue of the earth’s
rotation.

In Fig. 1, the SBR is located at A, and B represents the nadir point.
The point of interest D is located at range R from B along the great
circle that goes through B and D with C representing the center of the
earth (see [5]). The main parameters of an SBR setup are as shown in
Fig. 1 and are listed in the table in figure 2.

From Fig. 1, the core angle subtended at the center of earth by the
range arc BD is given by

θe = R/Re (1)

and from triangle ACD we get

R2
s = R2

e + (Re +H)2 − 2Re(Re +H) cos θe. (2)

Thus, the slant range Rs equals

Rs =
√

R2
e + (Re +H)2 − 2Re(Re +H) cos(R/Re) . (3)
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R Actual ground range from the nadir point to the point of interest along a great 

circle on the surface of the earth 

H SBR orbit height above the nadir point 

sR Radar slant range from the satellite to the antenna footprint at range R

Grazing angle at the antenna footprint at range R (i.e., the angle at which the

surface is illuminated by the radar beam)

e
R Earth’s radius (3,440 miles or 6,373 km)

EL
Mainbeam elevation from the vertical line associated with range R .

AZ
Azimuth point angle measured between the plane of the array (generally also the 

SBR velocity vector) and the elevation plane 

P
V Satellite velocity vector

e
Core angle between the nadir point and the grazing point measured at the earth’s 

center.

Figure 2. SBR Parameters

Similarly, the grazing angle ψ is also a function of range. To see this,
referring back to the triangle ACD we have the grazing angle at range
R to be

ψ = cos−1

(

Re +H

Rs
sin (R/Re)

)

, (4)

and the corresponding elevation angle is given by

θEL = sin−1

(

Re

Rs
sin (R/Re)

)

. (5)

Notice that both the grazing angle ψ and the elevation angle θEL are
range dependent.

From Fig. 1 we also have

θEL = sin−1

(

1

1 +H/Re

cosψ

)

. (6)

Similarly from the triangle ACD we obtain the alternate formula

θEL = π/2 − θe − ψ = π/2 − ψ −R/Re (7)

for the elevation angle as well. The slant range, grazing angle and ele-
vation angle as functions of range are shown in Fig. 3 and Fig. 4.

2.2 Maximum Range on Earth

The curvature of earth limits the maximum range achievable by a
satellite located at height H as shown in Fig. 5.
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Figure 3. Slant range vs. range

(a) Grazing angle vs range (b) Elevation angle vs range

Figure 4. Grazing angle and elevation angle vs. range.
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Figure 6. Maximum range and elevation angle vs. satellite height.

At maximum range, the slant range becomes tangential to the earth
so that the grazing angle ψ = 0 and from Fig. 5

θmax = cos−1

(

1

1 +H/Re

)

. (8)

The maximum range on earth for an SBR located at height H is given
by

Rmax = Re θmax = Re cos−1

(

1

1 +H/Re

)

. (9)

Similarly maximum slant range at the same height is given by

Rs,max = (Re +H) sin

{

cos−1

(

1

1 +H/Re

)}

, (10)

and the maximum elevation angle equals

θEL,max =
π

2
− θmax =

π

2
− cos−1

(

1

1 +H/Re

)

. (11)

For a low-earth orbit (LEO) satellite located at 506 km above the
ground, the maximum range is 2,460 km and θEL,max = 67.9o.

2.3 Mainbeam Footprint Size

The mainbeam of the radar generates a footprint on the ground whose
size will depend upon the actual range R. Let φEL represent the main-
beam width of the antenna pattern in the elevation plane. Further, let
RT and RH denote the ranges of the ‘toe’ and ‘heel’ of the mainbeam
footprint whose center is at range R, as shown in Fig. 7. Further, let ψT
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Figure 7. Mainbeam footprint at range R. Distances RT and RH correspond to
ranges at the ‘toe’ and ‘heel’ of the footprint. Range R represents the curved distance
BD to the center of the footprint.

A

B

2

EL
EL

2

T

T

H

T
R

eR

eR

C

Mainbeam

E

Figure 8. Range calculation at the ‘toe’ of the mainbeam footprint.
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and ψH represent the grazing angles at the ‘toe’ and ‘heel’ of the main-
beam footprint. Thus, from triangle ACE in Fig. 8 that corresponds to
the footprint ‘toe’, we have

sin(π/2 + ψT )

Re +H
=

sin(θEL + φEL/2)

Re

(12)

where θEL represents the elevation at range R. This gives the grazing
angle at the ‘toe’ to be

ψT = cos−1

{(

1 +
H

Re

)

sin

(

θEL +
φEL

2

)}

, (13)

and similarly the grazing angle at the ‘heel’ is given by

ψH = cos−1

{(

1 +
H

Re

)

sin

(

θEL −
φEL

2

)}

. (14)

Also, from Fig. 8, the core angle at the center of earth for the ‘toe’
equals

θT =
π

2
− θEL −

φEL

2
− ψT (15)

and the range to the mainbeam ‘toe’ equals

RT = ReθT = Re

(

π

2
− θEL −

φEL

2
− ψT

)

. (16)

Similarly, the range to the ‘heel’ of the mainbeam equals

RH = ReθH = Re

(

π

2
− θEL +

φEL

2
− ψH

)

. (17)

This gives the length of the footprint of the mainbeam at range R to be

L = RT −RH = Re(ψH − ψT − φEL). (18)

Let ψAZ represents the beamwidth in the azimuth direction. Then the
horizontal mainbeam beamwidth equals

W = Rs φAZ . (19)

As Fig. 9 shows, both the length and width of the footprint are func-
tions of range and height. In summary, when the antenna mainbeam
is focused along θEL, returns from the illuminated region of the corre-
sponding mainbeam footprint will contribute toward clutter from that
range [5].
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(b) Width of mainbeam footprint
Figure 9. (a) Length and (b) width of mainbeam footprint vs. range. Mainbeam
beamwidths in both elevation and azimuth directions are assumed to be 1o.
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2.4 Doppler Shift

Consider a space based radar (SBR) at height H above the earth on
a great circular orbit that is inclined at an angle ηi (with respect to the
equator). By virtue of earth’s gravity the SBR is moving with velocity

Vp =
√

GMe/(Re +H) (20)

in a circular orbit and this contributes to a relative velocity of

Vp cos θAZ sin θEL (21)

along the line-of-sight for a point of interest D on the ground that is at
an azimuth angle θAZ with respect to the flight path and an elevation
angle θEL with respect to the nadir line as shown in Fig. 10.

If Tr represents the radar pulse repetition rate and λ the operating
wavelength, then the Doppler ωd contributed by (21) equals [1, 7, 11,
12].

ωd =
2VpTr

λ/2
sin θEL cos θAZ (22)

and (22) accounts for the Doppler frequency of the ground return due
to the SBR motion. Fig. 11 shows the Doppler dependency on range
as a function of the azimuth angle. Clearly for a given azimuth angle,
the difference in Doppler along the range is minimum (zero) when the
azimuth look direction coincides with the bore-side of the array θAZ =
π/2. If the earth’s rotation is included as we shall see in section 3.2,
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Figure 12. Common wavefront showing all range ambiguity returns corresponding
to a point of interest at range R.

the Doppler difference due to range generates an undesirable ‘Doppler
filling’ effect when data samples from different range bins are used to
estimate the covariance matrix.

3. Range Foldover and Earth’s Rotation

3.1 Range Foldover Phenomenon

To detect targets, the radar transmits pulses periodically. Range fold-
over occurs when clutter returns from previously transmitted pulses, re-
turning from farther range bins, are combined with returns from the
point of interest. Depending on the size of the mainbeam footprint,
the 2-D antenna array pattern and the radar pulse repetition frequency,
range foldover can occur both from within the mainbeam as well as from
the entire 2-D region. The effect of mainbeam foldover is discussed first,
followed by its extension to the entire 2-D region [1, 3].

Range Resolution. Let τ represent the output pulse length and Tr

the pulse repetition interval. Pulses travel along the slant range and
interact with the ground through the mainbeam as well as the sidelobes
of the antenna array as shown in Fig. 13.
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Each pulse travels along the slant range and hence the slant range
that can be recovered unambiguously is of size cτ

2 . Thus, slant range
resolution is given by

δSR =
cτ

2
. (23)

Translating to the ground plane, since the pulse wavefront is perpen-
dicular to the slant range direction, we get the range resolution on the
ground to be

δR =
cτ

2 cosψ
=
cτ

2
secψ. (24)

Thus δR represents the ground-plane spatial resolution achievable by
the SBR. Two objects that are separated by a distance less than δR will
be indistinguishable by the radar. Notice that only the output pulse
length contributes to the range resolution and it can be orders of magni-
tude smaller than the actual pulse length because of pulse compression
effects. For example, using chirp waveforms it is possible to realize 1:100
or higher order compression. From (24) for short range regions where
the grazing ψ is closer to π/2, the range resolution is very poor, and for
long range the resolution approaches its limiting value δSR as ψ → 0.

Total Range Foldover. Radar transmits pulses every Tr seconds
and for high PRF situations, following (24), the distance ∆R between
range ambiguities on the ground (distance between consecutive pulse
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(b) PRF = 2 kHz(a)  PRF = 500 Hz

Figure 15. ∆R vs. range for (a) PRF = 500 Hz and (b) 2 kHz.

shadows) is given by

∆R =
cTr

2
secψ. (25)

Equation (25) assumes a high PRF situation where the grazing an-
gles at various range ambiguities are assumed to be equal. The general
situation that takes the change in grazing angle into account is shown
in Fig. 14.

If Rs represents the slant range at the end of one pulse (say at D),
Rs + cTr/2 is the new slant range at the end of the next pulse at E. Let
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Fig.  2-5  “Range foldover” phenomenon.

Figure 16. ‘Range foldover’ phenomenon.

R1 = R+∆R represent the new range corresponding to the second pulse
shadow on the ground at E. From triangle ACE in Fig. 14

(Rs + cTr/2)
2 = R2

e + (Re +H)2 − 2Re(Re +H) cos

(

R+ ∆R

Re

)

(26)

or

∆R = Re cos−1

(

R2
e + (Re +H)2 − (Rs + cTr/2)

2

2Re(Re +H)

)

−R. (27)

From Fig. 15, interestingly ∆R is a decreasing function of R, and
when R is relatively small, the distance between the pulse shadows on
the ground is large and is seen to decrease as R increases. However, for
large values of range, ∆R remains constant at its limiting c Tr/2. This
also follows from (25) since for large R the grazing angle approaches
zero.

To compute the total number of range foldovers for the entire range,
we can make use of Fig. 16. In Fig. 16, the point of interest (D) is within
the mainbeam, and the return of the radar pulse from there represents
the main clutter. However because of the 2-D antenna pattern, previous
pulse returns returning from adjacent ‘range ambiguities points’ — both
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Figure 17. Number of range ambiguities as a function of SBR height and PRF.

forward and backward — that have been appropriately scaled by the
array gain pattern get added to the mainbeam return causing additional
range foldover.

To compute the immediate forward and backward range ambiguity
points (E and F respectively), the geometry in Fig. 14 can be used. In
general, the kth forward and backward range ambiguity points are given
by

R±k = Re cos−1

(

R2
e + (Re +H)2 − (Rs ± kcTr/2)

2

2Re(Re +H)

)

, k = 1, 2, . . .

where R+k = Rk. Fig. 12 shows the return wavefront from all range
ambiguities corresponding to a point of interest D at range R.

Let Na refer to the total number of range ambiguities (both forward
and backward) corresponding to a range bin of interest. The clutter
returns from forward and backward range ambiguities get scaled by the
array gain corresponding to those locations and get added to the returns
from the point of interest. Fig. 17 shows the total number of range
ambiguities in the 2D region as a function of SBR height and PRF.
From this figure, it is seen that the total number of range foldovers at
500Hz PRF is 7. Returns from the Na range ambiguities contribute to
the clutter at this particular range [1–3, 8].

3.2 Modeling Earth’s Rotation for SBR

As we have seen in Section 3.1 the range foldover phenomenon —
clutter returns that correspond to previous radar pulses — contributes
to the SBR clutter. Another important phenomenon that affects the
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clutter data is the effect of earth’s motion around its own axis. At
various locations on earth this contributes differently to Doppler, and
the effect is modeled here [1, 9].

For any point on earth at range R that is at elevation angle θEL and
azimuth angle θAZ from an SBR at height H, the conventional Doppler
shift relative to the SBR equals [5]

ωd =
2VpTr

λ/2
sin θEL cos θAZ , (28)

as derived in Section 2.4. Let ηi denote the inclination of the SBR orbit
with respect to the equator (see Fig. 18–Fig. 19).

As the SBR moves around the earth, the earth itself is rotating around
its own axis on a 23.9345 hour basis in a west-to-east direction. This
contributes an eastward motion with equatorial velocity of

Ve =
2πRe

23.9345 × 3600
= 0.4651 km/ sec (29)

Let (α1, β1) refer to the latitude and longitude of the SBR nadir point
B and (α2, β2) those of the point of interest D as shown in Fig. 18–
Fig. 19.

As a result, the point of interest D on the earth at latitude α2 rotates
eastward with velocity Ve cosα2, which will contribute to the Doppler
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in (22) as well. To compute this new component in Doppler shift, note
from Fig. 19 that the angle BDY2 between the ground range vector R
and the earth velocity vector at D equals (π/2 + β) so that [5]

Vo = Ve cosα2 cos(π/2 + β) = −Ve cosα2 sinβ (30)

represents the earth’s relative velocity at D along the ground range di-
rection towards B. Since the grazing angle represents the slant range
angle with respect to the ground range at D (see Fig. 18), we have

Vo cosψ = −Ve cosα2 sin β cosψ (31)

represents the relative velocity contribution between the SBR and the
point of interest D due to the earth’s rotation towards the SBR. Combin-
ing (21) and (31) as in (22), we obtain the modified Doppler frequency
that also accounts for the earth’s rotation to be

ωd =
2Tr

λ/2
(Vp sin θEL cos θAZ − Ve cosα2 sin β cosψ) (32)

After some simplification, we obtain the modified Doppler frequency to
be [11, 12]

ωd =
2VpTr

λ/2
ρc sin θEL cos(θAZ + φc), (33)
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where

φc = tan−1

(

∆
√

cos2 α1 − cos2 ηi

1 − ∆ cos ηi

)

(34)

and
ρc =

√

1 + ∆2 cos2 α1 − 2∆ cos ηi. (35)

In (33)–(35), φc represents the crab angle and ρc represents the crab
magnitude. In summary, the effect of earth’s rotation on the Doppler
velocity is to introduce a crab angle and crab magnitude into the SBR
azimuth angle and modify it accordingly [1, 11, 12]. Interestingly both
these quantities depend only on the SBR orbit inclination and its lati-
tude, and not on the latitude or longitude of the clutter patch of interest.

Equation (33) corresponds to the case where the region of interest D
is to the east of the SBR path as shown in Fig. 19. If, on the other hand,
the region of interest is to the west of the SBR path, then

ωd =
2VpTr

λ/2
ρc sin θEL cos(θAZ − φc) (36)

with φc, ρc as defined in (33)–(35). Combining (33) and (36), we obtain
the modified Doppler to be

ωd =
2VpTr

λ/2
ρc sin θEL cos(θAZ ± φc). (37)

In (37), the plus sign is to be used when the region of interest is to the
east of the SBR path and the minus sign is to be used when the point
of interest is to the west of the SBR path.

Fig. 20 shows the crab angle and crab magnitude as a function of
SBR latitude for different inclination angles. Once again about 3.77o

error can be expected for the crab angle in the worst case.
The effect of crab angle on Doppler as a function of azimuth angle

for various range values is shown in Fig. 21. As (33) shows, the effect of
earth’s rotation is to shift the azimuth angle appearing in the Doppler
by approximately φc = 3.77o and simultaneously modify the Doppler
magnitude as well. As a result, even for θAZ = 90o, the Doppler peak
values occur away from ωd = 0 depending on the range. This shift in
Doppler with and without the crab effect is illustrated in Fig. 21 for
various azimuth angles.

4. Application of STAP for SBR

In this section, SBR data modeling is first carried out with appropri-
ate Doppler parameters. By considering the two phenomena, with and
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(b) Crab magnitude

Figure 20. (a) Crab angle and (b) crab magnitude as functions of SBR latitude for
different inclination angles.
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without range foldover effect and with and without earth’s rotational
effect — four cases of interest can be generated.

4.1 SBR Data Modeling

Consider an SBR array with N sensors and M pulses. If the incoming
wavefront makes an azimuth angle θAZ and elevation angle θEL with
reference to the array, define the first sensor output to be x1(t) and

c = sin θEL cos θAZ (38)

represent the ‘cone angle’ associated with the spatial point θEL, θAZ for
the SBR array. Then the concatenated data vector due to the N sensors
and M pulses is the MN by 1 vector given by [12]

x(t) = s(c, ωd)x1(t), (39)

where
s(c, ωd) = b(ωd) ⊗ a(c) (40)

represents the spatial-temporal steering vector with ⊗ representing the
Kronecker product. a(c) in (40) represents the spatial steering vector
and is given by

a(c) =
[

1, e−jπdc, e−j2πdc, · · · , e−j(N−1)πdc
]T

(41)

b(ωd) in (40) represents the temporal steering vector given by

b(ωd) +
[

1, e−jπωd , e−j2πωd , · · · , e−j(M−1)πωd

]T

(42)

Let θAZj
= θAZ + i∆θ, i = 0, ±1, ±2, ±No represent the azimuth

angles associated with the field of view, and θELm, m = 0, 1, 2, · · · , Na

the elevation angles corresponding to the total number of range foldover
in the field of view. Further let

cm, i = sin θEL m cos θAZi
(43)

represent the cone angle associated with the location θELm, θAZi
. The

total clutter return represents various range foldover returns that span
over all azimuth angles. This gives the ensemble average clutter covari-
ance matrix associated with range rk to be

Rk = E {yky
∗

k} (44)

where yk represents the clutter data.



Remote Sensing using Space Based Radar 21

4.2 SINR With/Without Earth’s Rotation and
Range Foldover

In practice, the covariance matrix in (44) corresponding to range rk
is unknown and needs to be estimated from data using the expression

R̂k =
∑

j

xk+jx
∗

k+j. (45)

In (45) the number of range bins over which the summation is carried out
is chosen so as to maintain stationary behavior for R̂k. The estimated
adaptive weight vector corresponding to (45) is given by the sample
matrix inversion (SMI) method as

ŵk = R̂−1
k s(ct, ωdt

) . (46)

A useful way of evaluating the performance of a particular STAP
algorithm is the signal power to interference plus noise ratio (SINR)
defined by

SINR =
|w∗ s|2

w∗ Rw
(47)

where w is the estimated adaptive weight vector and R is the ideal
clutter plus noise covariance matrix defined in (44). For the SMI, (47)
can be written as

SINR =
|(s)∗ R̂−1 (s)|2

(s)∗ R̂−1R R̂−1(s)
(48)

Clearly the performance of (48) is bounded by the ideal matched filter
output SINRideal obtained by letting R̂ = R in (44). This gives

SINRideal = s∗(c, ωd)R
−1 s(c, ωd) (49)

where s(c, ωd) is given by (40) and represents the space time steering
vector for the desired point of interest located at θ = (θEL, θAZ) that
corresponds to the cone-angle

c = sin θEL cos θAZ , (50)

and Doppler frequency ωd for the SBR configuration under considera-
tion. To quantify the performance deterioration due to earth’s rotation
and range foldover, the following four situations corresponding to four
different clutter covariance matrices are identified:

1 No range foldover, no earth’s rotation (ideal case);
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(a) w/o range foldover,

w/o earth’s rotation

(b) w/ range foldover,

w/o earth’s rotation

(c) w/o range foldover,

w/ earth’s rotation

(d) w/ range foldover,

w/ earth’s rotation

Figure 22. SINR loss with/without range foldover and earth’s rotation as a function
of range and Doppler

2 Range foldover present, no earth’s rotation;

3 No range foldover, earth’s rotation present;

4 Range foldover present, earth’s rotation present.

Fig. 22 shows the SINR loss for the four cases above as a function
of range and Doppler for an SBR located at height 506 km above the
ground. The PRF is 500 Hz and θAZ = 90o. The output is normalized
with respect to the noise only case. The performance is significantly
degraded when both range foldover and earth’s rotation are present at
the same time.

Fig. 23 shows the SINR loss for two different ranges. The SINR loss is
on the order of 20–40 dB when both range foldover and earth’s rotation
are present, depending on the actual range. The performance in terms
of clutter nulling is inferior when these two effects are present.
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Figure 23. SINR loss with/without range foldover and earth’s rotation for (a) 900
km and (b) 2000 km ranges.

Orthogonal

pulsing

Conventional

pulsing

Figure 24. SINR improvement using orthogonal pulsing, range=900 kms

Thus, having both range foldover and earth’s rotation at the same
time results in unacceptable performance degradation as shown in Fig. 23;
whereas when either one is present separately, the effect can be rectified.

5. Orthogonal Pulsing Scheme

Waveform diversity can be used on the sequence of transmitted radar
pulses to realize the above goal by suppressing the range foldover re-
turns. In ordinary practice, a set of identical pulses are transmitted. To
suppress returns due to range foldover, for example, individual pulses
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f1(t), f2(t), · · · can be made orthogonal to each other so that
∫ To

o

fi(t)fl(t) dt = δi,l, i, l = 1, 2, · · · , Na, (51)

where Na is the maximum number of distinct range foldovers present in
the data and δi,l is the Kronecker delta. Then, with appropriate matched
filtering [13], the range ambiguous returns can be minimized from the
main return corresponding to the range of interest. Note that for range
foldover elimination, waveform diversity needs to be implemented only
over Na pulses. For an SBR located at a height of 506 km and an
operating PRF = 500 Hz, Na ≈ 7. This is the case since matched
filtering will eliminate the superimposed range foldover returns since
they correspond to waveforms that are orthogonal to the one in the
mainbeam. Fig. 24 shows the SINR improvement using eight orthogonal
waveforms [13]. The performance is restored to the ideal case when
orthogonal waveforms are used.

In summary, using waveform diversity on transmit, it is possible to
eliminate the effect of range foldover resulting in performance improve-
ment as shown in Fig. 24. The resulting performance will be approxi-
mately the same as the performance shown in Fig. 22 (a), indicating that
using waveform diversity on transmit, it is possible to achieve perfor-
mance close to the ideal case even in the presence of both range foldover
and earth’s rotation. The results presented here correspond to the case
where the ensemble averaged clutter covariance matrix is given. The
case where the covariance matrix is estimated from secondary data is
more challenging.
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