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Abstract In this chapter, the sensing coverage area of surveillance wireless sensor
networks is considered. The sensing coverage is determined by apply-
ing Neyman-Pearson detection and defining the breach probability on
a grid-modeled field. Using a graph model for the perimeter, Dijkstra’s
shortest path algorithm is used to find the weakest breach path. The
breach probability is linked to parameters such as the false alarm rate,
size of the data record and the signal-to-noise ratio. Consequently, the
required number of sensor nodes and the surveillance performance of the
network are determined. For target tracking applications, small wire-
less sensors provide accurate information since they can be deployed
and operated near the phenomenon. These sensing devices have the op-
portunity of collaboration amongst themselves to improve the target lo-
calization and tracking accuracies. Distributed data fusion architecture
provides a collaborative tracking framework. Due to the present energy
constraints of these small sensing and wireless communicating devices, a
common trend is to put some of them into a dormant state. We adopt a
mutual information based metric to select the most informative subset
of the sensors to achieve reduction in the energy consumption, while
preserving the desired accuracies of the target position estimation.

1. Introduction

Wireless sensor devices that are employed for security applications
have several functionalities. The first one is the distributed detection of
the presence of a target, and the estimation of parameters of interest.
The target may be tracked for various purposes. The detection, estima-
tion and tracking efforts may or may not be collaborative. The second
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task involves wireless networking to organize and carry information. Is-
sues related to distributed detection and estimation have long been stud-
ied. Moreover, wireless sensor networking is addressed in the literature
to a certain extent in the context of ad hoc networking. However, there
is not much work done on how the wireless networking constraints af-
fect the distributed detection and estimation duty of the wireless smart
sensor networking devices.

The sensing and communication ranges of some propriety devices are
listed in [44]. For example, the sensing range of the Berkeley motes
acoustic sensor, HMC1002 magnometer sensor and the thrubeam type
photoelectric sensor are nearly one meter, 5 meters and 10 meters re-
spectively. The communication range of the Berkeley motes MPR300,
MPR400CB and MPR520A are 30, 150 and 300 meters, respectively.
The ratio of the communication and sensing ranges shows that the net-
work must be densely deployed. The high redundancy level of the net-
work necessitates energy conservation schemes.

For surveillance wireless sensor networks (SWSN), depending on the
sensing ranges and the coverage schemes of the sensors, as well as the de-
ployment density of the network, the sensing coverage area may contain
breach paths. The probability that a target traverses the region through
the breach path gives insight about the level of security provided by the
SWSN. Considering SWSN, some of the design challenges are:

1 How many sensor are to be deployed to provide a required security
level [31]?

2 How could the sensor detection be modeled and how is the sensing
coverage determined?

3 What are the effects of geographic properties of the field on target
detection?

4 How should the sensors be deployed in the region [38]?

5 What is the weakest part of the coverage and how can the breach
paths be discovered [11, 46]?

6 How could the false alarms be minimized and the decisions be
improved about target detection with collaboration?

7 What are the effects of the signal properties on the sensing cover-
age?

8 What is the impact of sensor scheduling on the sensing coverage
[36, 40, 43]?
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Figure 1. A sample field model constructed to find the breach path for length is 5
m., width 2 m., boundary 1 m., and grid size 1 m. (N = 8, M = 3).

9 Non-communicating sensors are useless; what should the effective
communication and sensing ranges of the sensors be [8, 40]?

10 Should incremental deployment be considered [19]?

Intrusion Detection

The security level of a WSN can be described with the breach probabil-
ity that can be defined as the miss probability of an unauthorized target
passing through the field. We define the weakest breach path problem as
finding the breach probability of the weakest path in a SWSN. To calcu-
late the breach probability, one needs to determine the sensing coverage
of the field in terms of the detection probabilities.

In order to simplify the formulations, we model the field as a cross-
connected grid as in Fig. 1 The field model consists of the grid points,
the starting point and the destination point.

The target aims to breach through the field from the starting point
that represents the insecure side to the destination point that represents
the secure side from the SWN viewpoint. The horizontal and vertical
axes are divided into N − 1 and M − 1 equal parts, respectively. In this
grid-based field model along the y-axis, we add boundary regions to the
two sides of the field. Thus, there are NM grid points plus the starting
and destination points.

Sensor deployment has a direct impact on the performance of tar-
get detection. Chvatal’s art gallery problem [10] is to determine the
minimum number of guards required to cover all points in a gallery.
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The similarity between the art gallery and sensor placement problems is
established in [12], where algorithms are proposed to find effective loca-
tions for the sensor nodes. One algorithm tries to maximize the average
coverage of the grids and the other tries to maximize the coverage of
the least effectively covered grid. The goal is to determine the required
number of sensor nodes and their places to provide a coverage threshold
that defines the confidence level of the deployment.

Another approach to the breach path problem is finding the path
which is as far as possible from the sensor nodes as suggested in [27],
where the maximum breach path and maximum support path problems
are formulated. In the maximum breach path formulation the objective
is to find a path from the initial point to the destination point where
the smallest distance from the set of sensor nodes is maximized. In the
former problem, the longest distance between any point and the set of
sensor nodes is minimized. To solve these problems, Kruskal’s algorithm
is modified to find the maximal spanning tree, and the definition of a
breach number tree is introduced as a binary tree whose leaves are the
vertices of the Voronoi graph.

The weakest breach path is also referred to as the best coverage prob-
lem in [24]. The energy considerations are modeled, a graph is created
and the distributed Bellman-Ford algorithm is used to find the shortest
path. Several extensions to the solutions are provided such as finding
the best path with the minimum energy consumption and finding the
path where the length is bounded.

In [26], Megerian et al. introduce the exposure concept as the ability
to observe a target moving in a sensor field. By expressing the sensibility
of a sensor in a generic form, the field intensity is defined as the sum
of the active sensor sensibilities. The exposure is then defined as the
integral of the intensities (involving all sensors or just the closest one)
on the points in a path in the sensor field.

The field to be monitored is usually narrow and long in perimeter
security applications. Thus, non-uniform deployment may be necessary.
He et al. conclude that the sensor nodes generate false alarms at a non-
negligible rate [18], and an exponentially weighted moving average on
the sensor node is sufficient to eliminate transient alarms.

Due to the scarcity of energy resources of sensor nodes, energy con-
servation at all layers of the sensor network models is a widely studied
topic. One method of energy conservation is applying a well-designed
sleep schedule of sensor nodes [36, 40, 43]. However, for surveillance ap-
plications sleep scheduling of sensor nodes may produce insecure regions
in the field. Thus, the primary concern in designing a sleep schedul-
ing for surveillance wireless sensor networks is maintaining the coverage
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area. In [40], a coverage configuration protocol is presented that provides
varying degrees of coverage depending on the application. Defining the
coverage as the monitoring quality of a region, an analysis of the sens-
ing coverage and communication connectivity is provided in a unified
framework rather than an isolated one.

Target Tracking

Target tracking, in other words the processing of the measurements
obtained from a target in order to maintain an estimate of its current
state, has major importance in Command, Control, Communications,
Computer, Intelligence, Surveillance and Reconnaissance (C4ISR) ap-
plications. Emerging wireless sensor technologies facilitate the tracking
of targets just from within the phenomenon. Due to environmental per-
turbations, observations obtained close to the phenomenon are more
reliable than observations obtained far from it. Wireless communication
characteristics of the emerging wireless sensor nodes provide an excellent
distributed coordination mechanism to improve global target localization
accuracies. However, again, there is an inherent energy constraint for
wireless sensor devices. In order to conserve valuable battery energy of
wireless sensor devices, some of the sensors go into the dormant state
controlled by the sleep schedule [42]. Only a subset of the sensors are
active at any instant of time. Otherwise, a bulk of redundant data would
be wandering in the network.

Collaborative target tracking has inherent questions such as how to
dynamically determine who should sense, what needs to be sensed, and
whom the information must be passed on to. Sensor collaboration im-
proves detection quality, track quality, scalability, survivability, and re-
source usage [45].

There is a trade-off between energy expenditure and tracking quality
in sensor networks [32]. Sensor activation strategies are naive activation

in which all the sensors are active, randomized activation in which a
random subset of the sensors are active, selective activation in which a
subset of the sensors are chosen according to some performance metric,
and duty cycled activation in which the sensors are active for some duty
cycle and in dormant state thereafter.

In information driven sensor querying (IDSQ) [9, 45], the so-called
cluster heads decide on the sensors to participate actively in the tracking
task. In [25], a dual-space approach is presented in which the subset of
sensors towards whom the target is approaching are selected to be active.
In the location-centric approach to collaborative sensing and tracking,
addressing and communication is performed among geographic regions
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within the network rather than individual nodes [35, 5]. This makes lo-
calized selective-activation strategies simpler to implement. Prediction
based target tracking techniques based on Pheromones, Bayesian, and
Extended Kalman Filter are presented in [6, 7], and a real implemen-
tation presented in [28]. Multiple target tracking is examined in [4, 15,
23].

Censoring sensors [1, 17, 33, 34] is one approach to diminish the net-
work traffic load. Sensors deemed as noninformative do not send their
decisions or observations if their local likelihood ratio falls in a certain
single interval. A special case of this phenomenon occurs when the lower
bound of the no-send region interval used is zero. In this particular case,
the problem reduces to sending the local decision/observation if the lo-
cal likelihood ratio is above some threshold and not sending the local
decision/observation if the local likelihood ratio falls below a threshold.
A deficiency with this approach occurs for tracking applications if all the
sensor local likelihood ratios fall in the no-send region, so that no belief
about the target state will be shared among the sensors.

Research [37, 43] has focused on how to provide full or partial sensing
coverage in the context of energy conservation. In such an approach,
nodes are put into a dormant state as long as their neighbors can provide
sensing coverage for them. These solutions regard the sensing coverage
to a certain geographic area as binary, i.e., either it provides coverage or
not [42]. These approaches consider the sensor selection problem only
in terms of coverage and energy saving aspects. They do not consider
the detection quality. In tracking applications, when selecting a subset
of sensors to contribute to the global decision we have to consider how
informative the sensors are about the state of the target.

In some approaches to the sensor selection problem [9, 14], the sensor
which will result in the smallest expected posterior uncertainty of the
target state is chosen as the next node to contribute to the decision.
It is shown in [14] that minimizing the expected posterior uncertainty
is equivalent to maximizing the mutual information between the sensor
output and the target state. In [39], an entropy-based sensor selection
heuristic is proposed for target localization. The heuristic in [39] selects
one sensor in each step and the observation of the selected sensor is incor-
porated into the target location distribution using sequential Bayesian
filtering.

2. Neyman-Pearson Detection

Using the field model described above, detection probabilities are to
be computed for each grid point to find the breach probability. The
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optimal decision rule that maximizes the detection probability subject
to a maximum allowable false alarm rate α is given by the Neyman-
Pearson formulation [21]. Two hypotheses that represent the presence
and absence of a target are set up. The Neyman-Pearson (NP) detector
computes the likelihood ratio of the respective probability density func-
tions, and compares it against a threshold which is designed such that
a specified false alarm constraint is satisfied.

Suppose that passive signal reception takes place in the presence of
additive white Gaussian noise (AWGN) with zero mean and variance σ2

n,
as well as path-loss with propagation exponent η. The symbol power at
the target is ψ, and the signal-to-noise power ratio (SNR) is defined as
γ = ψ/σ2

n. Each breach decision is based on the processing of L data
samples. We assume that the data are collected fast enough so that
the Euclidean distance dvi between the grid point v and sensor node i
remains about constant throughout the observation epoch. Then, given
a false alarm rate α, the detection probability of a target at grid point
v by sensor i is [21, 31]

pvi = 1 − Φ
(

Φ−1(1 − α) −
√

Lγvi

)

where Φ(x) is the cumulative distribution function of the zero-mean,
unit-variance Gaussian random variable at point x, and

γvi = γAd−η
vi

represents the signal-to-noise ratio at the sensor node i, with A account-
ing for factors such as antenna gains and transmission frequency. Active
sensing can be accommodated by properly adjusting the constant A.

Because the NP detector ensures that

lim
dvi→∞

pvi = α,

instead of pvi we use [31]

p∗vi =

{

pvi if pvi ≥ pt,
0 otherwise,

where pt ∈ (0.5, 1) is the threshold probability that represents the confi-
dence level of the sensor. That is, the sensor decisions are deemed suffi-
ciently reliable only at those dvi distances where pvi > pt. Depending on
the application and the false alarm requirement, typically pt ≥ 0.9. Note
that p∗vi is not a probability measure, but we shall nevertheless treat it
as one in the ensuing calculations.
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For those sensor types where the detection probability can not be ex-
plicitly tied to signal, noise and propagation parameters (e.g. infrared),
the sensing model proposed by Elfes can be used [13]. The detection
probability is defined such that different sensor types are represented
by generic parameters. When the sensor-to-target distance is smaller
(larger) than a threshold, the target is absolutely (not) detected. Elfes’s
model is employed in [30], where the required number of sensors is deter-
mined for a target breach probability level under random sensor place-
ment.

The detection probability pv at any grid point v is defined as

pv = 1 −

R
∏

i=1

(1 − p∗vi) (1)

where R is the number of sensor nodes deployed in the field. The miss
probabilities of the starting and destination points are one, that is p0 = 0
and pNM+1 = 0. More clearly, these points are not monitored because
they are not in the sensing coverage area. The boundary regions are not
taken into consideration.

The weakest breach path problem can now be defined as finding the
permutation of a subset of grid points V = [v0, v1, . . . , vk] with which a
target traverses from the starting point to the destination point with the
least probability of being detected, where v0 = 0 is the starting point
and vk = NM+1 is the destination point. Here we can define the breach
probability P of the weakest breach path V as

P =
∏

vj∈V

(1 − pvj
) (2)

where pvj
is the detection probability associated with the grid point

vj ∈ V , defined as in (1). A sample sensing coverage and breach path
is shown in Fig. 2. Using the two-dimensional field model and adding
the detection probability as the third axis, we obtain hills and valleys of
detection probabilities. The weakest breach path problem can be infor-
mally defined as finding the path which follows the valleys and through
which the target does not have to climb hills so much. For a number of
quality of deployment measures that can be utilized to evaluate a sensor
network’s intrusion detection capability, see [29].

In order to solve the weakest breach path problem, linear program-
ming algorithms such as simplex can be utilized [3]. However, since we
construct a graph to model the field, Dijkstra’s shortest path algorithm
can be employed [41]. The detection probabilities associated with the
grid points cannot be directly used as weights of the grid points, and
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Figure 2. A sample sensing coverage and breach path where the field is 70× 20 m.,
the boundary is 5 m. wide and the grid size is 1 m. (N = 81, M = 21, L = 100, R =
30, α = 0.1, η = 5, γ = 30 dB.) [31].

consequently they must be transformed to a new measure dv. Specifi-
cally, we assign the negative logarithms of the miss probabilities, defined
as

dv = − log(1 − pv)

as weights of the grid points.
Using Dijkstra’s algorithm, the breach probability can be defined as

the inverse transformation of the weight dNM+1 of the destination point
which is

P = 10−dNM+1 . (3)

The resulting path V is used to calculate the breach probability in (2),
which is equal to the value computed in (3) [30].

3. Breach Probability Analysis [31]

The system parameter values depend on the particular application.
When a house or a factory is to be monitored for intrusion detection,
the cost of false alarms is relatively low. On the other hand, the fi-
nancial and personnel cost of a false alarm is significantly higher when
the perimeter security of some mission-critical place such as an embassy
or nuclear reactor is to be provided by deploying a SWSN to moni-
tor unauthorized access. The cost of a false alarm might involve the
transportation of special forces and/or personnel of related government
agencies to the embassy/museum, as well as the evacuation of residents
in the surrounding area.

In simulations, an area with dimensions 100 m. × 10 m. is secured
by a WSN. The grid size is taken as one meter so that the detection
probabilities of targets on adjacent grid points are independent. The
boundary width is 10 m. The false alarm rate is set to 0.01, which is
rather demanding on the network. Other nominal values are η = 3, L =
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100, γ = 30 dB, pt = 0.9 and R = 31. The results are the averages of 50
runs.
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Figure 3. The effect of α on the breach probability.
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Figure 4. The effect of γ on the breach probability.

The breach probability P is quite sensitive to the false alarm rate
α. As shown in Fig. 3b, as α increases, the SWSN allows more false
alarms. Because α reflects the tolerance level to false alarm errors, the
NP detection probability and the detection probability pv of the targets
at grid point v both increase in α. Consequently, the breach probability
decreases.

As the signal-to-noise ratio γ increases, the detection performance
improves (see Fig. 4), and the breach probability decreases. Depending
on the path-loss exponent, γ = 10 dB yields minimal breach probability.
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Figure 6. The effect of the number of sensor nodes on the breach probability for
yv ∼ Normal(M/2, N/10).

Note that η and γ display a duality in that if one is fixed, the performance
breaks down when the other parameter is below or above some value.

While analyzing the required number of sensor nodes for a given
breach probability, we consider two cases of random deployment. In the
first case, we assume that the sensor nodes are uniformly distributed
along both the vertical and horizontal axes. In the second case, the sen-
sor nodes are deployed uniformly along the horizontal axis and normally
distributed along the vertical axis with mean M/2 and a standard devia-
tion of 10% of the width of the field. In the simulations, the sensor nodes
that are deployed outside the field are not included in the computations
of the detection probabilities.
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Considering the uniformly distributed y-axis scheme, the required
number of sensor nodes for a given breach probability is plotted in Fig. 5.
A breach probability of 0.01 can be achieved by utilizing 45 sensors.
Changing the false alarm rate to α = 0.1, the requirement becomes 30
sensor nodes. The rapid decrease in the breach probability at R = 16
in Fig. 5a can be justified by the fact that most of the grid points are
covered with high detection probabilities (saturated) for R = 15, and
adding one more sensor node decreases the breach probability drasti-
cally. Once saturation is reached, placing more sensors in the field has
marginal effect.

Analyzing Fig. 6, the above-mentioned saturation is seen more clearly
for the normal-distributed y-axis scheme. For this kind of deployment,
since the sensor node may fall outside the field, the breach probability
decreases slower compared to the uniformly distributed y-axis scheme.

4. Data Processing Architecture for Target
Tracking

In this section, we first define the process and observation models for
target tracking. Then the foundations of the distributed data fusion
architecture are presented.

Process Model

The target process is a four dimensional vector that consists of the two
dimensional position of the target, (ξ, η), and the velocity of the target,
(ξ̇, η̇), at each of these dimensions. The target process state vector is
defined by

x = [ξ η ξ̇ η̇]T , (4)

and it evolves in time according to

x(k + 1) = Fx(k) + v(k)

where x(k) is the real target state vector at time k as given in (4), F is
the process transition matrix, and v is the process transition noise.

Observation Model

Sensors can only observe the first two dimensions of the process. The
velocity of the target is not observable by the sensors. Furthermore,
sensors collect range and bearing data, but they cannot observe the co-
ordinates of the target directly. Because sensors observe the target state
in polar coordinates, linear filtering formulations do not help. There are
two implementation alternatives to remedy this problem: (1) by using
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the inverse transformation, obtain directly a converted measurement of
the target position; (2) leave the measurement in its original form. The
former yields a purely linear problem, allowing for linear filtering. The
latter leads to a mixed coordinate filter [2]. In [22], the mean and co-
variance of the errors of Cartesian measurements, which are obtained by
converting polar measurements, are derived. This conversion provides
better estimation accuracy than the Extended Kalman Filter (EKF),
in which the nonlinear target state measurements are utilized without
conversion [22].

The measured range and bearing are defined with respect to the true
range r and bearing θ as

rm = r + r̃

θm = θ + θ̃

where the errors in range r̃ and bearing θ̃ are assumed to be independent
with zero mean and standard deviations σr and σθ, respectively.

The target mean state observed after the unbiased polar-to-Cartesian
conversion is given by

ϕc =

[

ξc
m

ηc
m

]

=

[

rm cos θm

rm sin θm

]

− µ

where µ is the average true bias:

µ =

[

rm cos θm(e−σ2
θ − e−σ2

θ
/2)

rm sin θm(e−σ2
θ − e−σ2

θ
/2)

]

.

The covariances of the observation errors are [2, 22]

R11 = r2me
−2σ2

θ

[

cos2 θm(cosh 2σ2
θ − cosh σ2

θ)

+ sin2 θm(sinh 2σ2
θ − sinhσ2

θ)
]

+ σ2
re

−2σ2
θ

[

cos2 θm(2 cosh 2σ2
θ − coshσ2

θ)

+ sin2 θm(2 sinh 2σ2
θ − sinhσ2

θ)
]

,

R22 = r2me
−2σ2

θ

[

sin2 θm(cosh 2σ2
θ − cosh σ2

θ)

+ cos2 θm(sinh 2σ2
θ − sinhσ2

θ)
]

+ σ2
re

−2σ2
θ

[

sin2 θm(2 cosh 2σ2
θ − coshσ2

θ)

+ cos2 θm(2 sinh 2σ2
θ − sinhσ2

θ)
]

R12 = sin θm cos θme
−4σ2

θ

[

σ2
r + (r2m + σ2

r )(1 − eσ
2
θ )

]

.
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Distributed Data Fusion Architecture

Information state y and the information matrix Y associated with an
observation estimate x̂, and the covariance of the observation estimate
P at time instant k are given by [16]

ŷ(k) = P−1(k)x̂(k),

Y(k) = P−1(k).

In [16], it is also shown that by means of sufficient statistics, an ob-
servation ϕ contributes i(k) to the information state y and I(k) to the
information matrix Y where

i(k) = HTR−1(k)ϕ(k), (5)

I(k) = HTR−1(k)H

and H is the observation matrix of the sensor.
Instead of sharing the measurements related to the target state among

the collaborating sensors, sharing the information form of the observa-
tions results in a simple additive fusion framework that can be run on
each of the tiny sensing devices. The distributed data fusion equations
are

ŷ(k | k) = ŷ(k | k − 1) +
N

∑

i=1

ii(k), (6)

Y(k | k) = Y(k | k − 1) +

N
∑

i=1

Ii(k) (7)

where N is the total number of sensors participating in the fusion process
and ŷ(k | k−1) represents the information state estimate at time k given
the observations including time k − 1.

Just before the data at time k are collected, if we were given the
observations up to the time k − 1, the predicted information state and
the information matrix at time k could be calculated from

ŷ(k | k − 1) = Y(k | k − 1)FY−1(k − 1 | k − 1)ŷ(k − 1 | k − 1),

Y(k | k − 1) = [FY−1(k − 1 | k − 1)FT + Q]−1

where Q is the state transition covariance.
State estimate of the target at any time k can be found from

x̂(k | k) = Y−1(k | k)ŷ(k | k). (8)
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Figure 7. Target tracking algorithm for a sensor.

5. Maximum Mutual Information Based Sensor
Selection Algorithm

Mutual information measures how much information one random vari-
able tells about another one. In target localization and tracking appli-
cations, the random variables of interest are the target state and the
observation obtained about the target state. By measuring the mutual
information between the target state and the measurement, one can gain
insight as to how much the current observation tells about the current
target state.

The algorithm employed by a sensor for tracking targets in a collabo-
rative manner within the distributed data fusion framework is depicted
in Fig. 7. The information state and the information matrix are defined
by (5). The predicted information state and the information matrix
are computed by (7). The sensor’s current belief is updated by its own
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sensory observation according to

ŷ(k | k) = ŷ(k | k − 1) + i(k),

Y(k | k) = Y(k | k − 1) + I(k).

Active participation to the current cycle is decided based on the mu-
tual information gained with the last observation. This event can be
formulated as

J(k, ϕ(k)) =
1

2
log

[

|Y(k | k)|

|Y(k | k − 1)|

]

. (9)

If the mutual information gain J of the sensor is sufficiently high to par-
ticipate in the current cycle, the sensor shares its own information about
the target state with the neighboring nodes. Otherwise, the sensor does
not transmit during the current cycle. In (9), Y(k | k − 1) denotes the
predicted information matrix at the time instant k, given the observation
up to the time instant k−1. Thus, the sensor has an estimate about the
target state information that it will have at time instant k, before the
observation of the target state at time instant k. Y(k | k) is the informa-
tion matrix at the time instant k after the target state is observed. The
mutual information in (9) measures the improvement in the target state
estimate achieved with the observation. To decide if the mutual informa-
tion is adequately high to participate in the current cycle, a sensor needs
to know the mutual information values of its neighboring sensors. This
information is hard to predict ahead of time. To tackle this problem, we
design each sensor to hold a list of its neighboring sensors. The elements
of this list are the sensor characteristics like the standard deviation of
the target range observations, standard deviation of the target angle
observations, and the communication transmission power. Knowing the
communication signal transmission power of the neighboring sensor, it
is easy to estimate the relative position of the neighboring sensor. This
position estimation is done in a sliding window average of the last eight
communications received from the neighboring sensor. With the sensors’
own observation about the target state, it is again easy to estimate the
Y(k | k) value of the neighboring sensor. Y(k | k−1) is the estimation of
the cooperated information matrix. Given this information, the mutual
information J for the neighboring sensors is estimated. All the neighbor-
ing sensors and the sensor itself are sorted according to the decreasing
mutual information order. If the sensor detects the target, and the rank
of its mutual information is lower than the maximum allowed number of
sensors to communicate then the sensor broadcasts its information state
and the information matrix denominations to the network. The current
belief is updated with the received information from the sensors in the
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vicinity according to (6). A current state estimate for the target can be
found from (8).

6. Simulation Results

We run Monte Carlo simulations to examine the performance of the
sensor selection algorithm based on the maximization of mutual infor-
mation for the distributed data fusion architecture. We examine two
scenarios: first is the sparser one, which consists of 50 sensors randomly
deployed in the 200 m × 200 m area. The second is a denser scenario
in which 100 sensors are deployed in the same area. All data points in
the graphs represent the means of ten runs. A target moves in the area
according to the process model described in Section 4. We utilize the
Neyman-Pearson detector [21, 31] with α = 0.05, L = 100, η = 2, 2-dB
antenna gain, , -30-dB sensor transmission power and -6-dB noise power.

The sensor tracks the target locally using the information form of the
Kalman filtering [20] as described in Section 4. If the sensor does not
detect a target, it updates its belief about the target state just by setting
the Kalman filter gain to zero, which means that the sensor tracks the
target according to the track history.

In collaborative information fusion, if a sensor is eligible to share
its belief about the target state with other sensors, it broadcasts its
information state and the information matrix. Sensors that receive these
data according to the shadow-fading radio propagation model update
their belief about the target state as described in Section 4. The shadow-
fading radio propagation model assumes that the antenna heights are 10
cm., the shadow-fading standard deviation is 4, and the carrier frequency
is 1.8 GHz. If the received communication signal from a sensor is below
15 dB, then the signal is treated as garbage.

In the simulations, we compare the mean squared error about the
target localization for the collaborative tracking framework described
in Section 4. We achieve maximum tracking accuracy when all sen-
sors detecting the target participate in the distributed data fusion task.
As the number of sensors allowed to participate in the fusion task is
reduced, tracking quality deteriorates. This yields higher localization
errors about the distributed target position estimations. However, a re-
duced number of sensors allowed to communicate yields a lower number
of communication packets traveling in the network. Reduction in the
number of sent packets affects the energy expenditure of the wireless
sensor devices directly. Selecting the sensors to actively participate in
the fusion task in an intelligent manner improves tracking quality while
allowing the same number of sensors to communicate. Figure 8 depicts
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Figure 8. Illustration of the 50-sensor scenario.

the 50-sensor scenario, target location observation errors, Kalman and
information filtered target localization errors, and cooperative informa-
tion filtered target localization errors from the viewpoint of the sensor
which is marked with a star inside it.

Selecting the participating active sensors randomly means that a sen-
sor detecting the target broadcasts its information immediately if the
maximum number of sensors to participate has not yet been reached.
The minimum Mahalanobis distance based sensor selection algorithm
selects the closest sensors to the target location in terms of the Maha-
lanobis distance. Mahalanobis distance takes into account the correla-
tions of the data. If the covariance matrix is the identity matrix then
Mahalanobis distance is the same as Euclidian distance. Figures 9 and
10 show, for the sparse and dense scenarios respectively, that as the max-
imum number of sensors allowed to communicate in the vicinity of the
current cycle increases, total Mean Squared Error occurring throughout
a hundred seconds scenario decreases for all three sensor selection algo-
rithms. Target localization errors are calculated each second. For the
cases studied, selecting sensors which improve the global belief about
target position according to the mutual information metric results in an
average 4.07% improvement in tracking quality with respect to random
sensor selection. 2.86% tracking quality improvement is achived with re-
spect to the maximum Mahalanobis distance based sensor selection for
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Figure 9. Mean squared error comparison for the sparse scenario.
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Figure 10. Mean squared error comparison for the dense scenario.

the sparse scenario. For the dense scenario of 100 sensors, these improve-
ments with the mutual information based sensor selection algorithm go
to 9.65% and 6.32% with respect to the random and the Mahalanobis
distance based sensor selection algorithms, respectively.

Figures 11 and 12 depict the total energy exhausted in the network for
all three sensor selection algorithms during the hundred seconds scenario.
Consumed energy increases as the maximum number of sensors that are
allowed to communicate for the current cycle increases. This was a
natural result of the increasing number of communication packets in
the network. However, the sensor selection algorithm does not have a
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Figure 11. Comparison of the consumed energy for the sparse scenario.

0 5 10 15 20 25

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of sensors allowed to communicate

E
ne

rg
y 

ex
ha

us
te

d 
(J

ou
le

)

maximum mutual information
minimum Mahalanobis distance
random

Figure 12. Comparison of the consumed energy for the dense scenario.

significant effect on the exhausted energy of the network for any number
of allowed sensors to communicate.

7. Conclusion

We employ the Neyman-Pearson detector to find the sensing cover-
age area of the surveillance wireless sensor networks. In order to find
the breach path, we apply Dijkstra’s shortest path algorithm by us-
ing the negative log of the miss probabilities as the grid point weights.
The breach probability is defined as the miss probability of the weakest
breach path. The false alarm rate constraint has a significant impact on
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the intrusion detection performance of the network, which is measured
by the breach probability.

The model and results developed herein give clues that link false
alarms to energy efficiency. Enforcing a low false alarm rate to avoid un-
necessary response costs implies either a larger data-set (L) and hence a
greater battery consumption, or a denser sensor network, which increases
the deployment cost. Similar qualitative and/or quantitative inferences
about the relationships between various other parameters can also be
made.

Wireless sensor networks are prone to failures. Furthermore, the sen-
sor nodes die due to their limited energy resources. Therefore, the fail-
ures of sensor nodes must be modelled and incorporated into the breach
path calculations in the future. Simulating the reliability of the network
throughout the entire life of the wireless sensor network is also required.
Lastly, especially for perimeter surveillance applications, obstacles in
the environment play a critical role in terms of sensing and must be
incorporated in the field model.

A mutual information based information metric is adopted to select
the most informative subset of sensors to actively participate in the dis-
tributed data fusion framework. The duty of the sensors is to accurately
localize and track the targets. Simulation results show 36% energy sav-
ing for a given tracking quality can be achievable by selecting the sensors
to cooperate according to the mutual information metric.

In all tests, we assumed all the sensor nodes send reliable data to the
network. In future work, detection of faulty and outlier sensors in the
network must be investigated, and precautions need to be taken against
them. We considered the effect of sensor selection algorithms in the
context of distributed data fusion for tracking a single target. Existence
of multiple targets introduces challenges with track-to-track association
and track-to-sensor association, as well as issues related to access control
and routing.
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