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ABSTRACT. What characterizes mobile multimedia is multiple signal sources, a mul-
titude of applications, and transmission over channels with limited bandwidth and
power, plus varying noise and attenuation. To cope with these variabilities new and
improved communication systems should be developed. Joint source-channel coding
may be one contribution towards this end. This article suggests an efficient commu-
nication principle where the sampled analog signal is first decomposed and thereafter
mapped to the channel space using dimension-reducing nonlinear mappings. The ar-
ticle discusses the optimality of such an approach for artificial sources, but also shows
simulation results for practical still image and video sources. Graceful degradation as
a function of channel deterioration is shown to result from the proposed method.

1. Introduction

A slogan in the communication industry is “Communication everywhere at anytime to any-
body”. To achieve this end the user terminal must be mobile. When we also include multi-
media services, we get the termmobile multimediasystems. Multimedia communication will
contain signals of very different origin and characteristics. There will be analog sources like
speech, music, still images, and video, and numerical sources like text, measurement data etc.
Traditionally, all these signal types are transmitted over channels using the same modulation
method and the same error correction type irrespective of the signal origin and its applica-
tion. This is simple from an overall system perspective as the channel does not have to worry
about the origin of the source, nor its application. On the other hand, the source coder will
see a virtually error-free channel which alleviates all concerns about bit-errors. This strict
distinction between source and channel coding for analog sources is implied by Shannon’s
work [9, 10], where it is shown that these operations can indeed be optimized separately in
the ideal case. This, however, requires infinite system delay and infinite complexity. So the
question remains, is the situation different for practical solutions? Also, Shannon’s results do
not give any indications about what happens when the channel changes and the required error
protection no longer works.

With the advent of multimedia services for which the signals are to be transmitted over a
variety of channels, including mobile and other wireless media where bandwidth and power
are scarce, we might have to reconsider the traditional system philosophy and opt for more
flexible modem designs which are adaptive to the input signal and the application. This calls
for new system optimizations which take the signal and channel coding into consideration
simultaneously.
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FIGURE 1. Signal chain for the transmitter part of the image communication system.
H1(s) andH2(s) are anti aliasing and imaging component removal filters, A/D and
D/A are the conversion circuits, and DSP is the digital processing unit.

The bottom line in this discussion is that when we allow lossy coding of e.g. images
or video, there is no need to transmit the compressed signals without bit errors. It will be
advantageous to allocate some of the allowed noise to the compression operation, but spend
the rest on the transmission part. Of course, it is imperative that we design the systems
to minimize both noise contributions. The question is how much of either type should be
allocated to get the overall best performance.

The above is characteristic of a situation where the channel is completely known. Then
some optimal distribution between noise sources may be obtained. In wireless scenarios, in
particular when mobile transmitters or receivers are involved, or in broadcasting situations
where the different receivers encounter different channel conditions, robustness becomes the
significant consideration. Variations in the channel should not be disastrous, but graceful
degradations could be tolerated when the channel deteriorates.

When several data types coexist on a transmission medium it is necessary, under the above
assumptions, that different signals are transmitted using different channel alphabets. In con-
trast to the above, certain types of data cannot tolerate bit errors. This may be numerical
data or even image data obtained by lossless compression. With this scenario two different
alphabets could be used. Assuming thatC codewords can be applied in some modulation
scheme to obtain an acceptable channel noise for the analog source signals, then a smaller
configuration, say with an alphabet of size�C (� < 1), can be used for transmission of nu-
merical data. The number� must be set to a value small enough to keep the error rate within
acceptable limits for numerical data. This mode will certainly also contain error protection
bits. Similarly, there is usually some side information generated from the source encoder that
needs special attention. This type of information must not be destroyed and should therefore
also be transmitted in the secure mode.

As the numerical data must be transmitted in a traditional way, we focus our attention on
the transmission of analog signals.

2. Model and performance limits for analog source transmission

The transmission system under consideration is shown in Figure 1. It is an analog-to-digital-
digital-to-analog system, or considered as an end-to-end system, an analog-to-analog system,
hopefully having some signal compression ability to be exactly defined later.

To simplify the description the following modeling assumptions are made:

� The signal can be ideally represented by uniform sampling at the ratefs, wherefs =
2B, andB is the signal bandwidth.

� The channel is an ideal Nyquist channel that can transmit at a ratefc over a channel
with bandwidthfc=2.

This means that a sampled signal of bandwidthB can be transmitted over a channel of band-
widthB. Consequently, the time discrete signal requires the same bandwidth as the original
analog signal. We shall use this simplification below for defining systemcompressionor
efficiency.
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FIGURE 2. The idealized image communication system including signal decompo-
sition, mapping from signal parameters to the channel representation, channel with
additive noise, inverse mapping, and reconstruction.

We can, in practice, relax these idealized assumptions by incorporating some oversam-
pling of the signal and introducing a roll-off factor for the channel filters to make them im-
plementable.

A model composed of what is called the digital processor in Figure 1, the channel, and
the inverse digital processor is shown in Figure 2.

On the transmitter side there are basically two parts:

� A signal decomposition unit.
� A mapping device.

As will become clearer below, the role of the decomposition unit is to cluster signal com-
ponents into blocks with similar statistics. Compression is obtained through the mapping
device, which takes a block ofM source samples (collected into the vectoru) and maps it to
the vectory consisting ofK channel samples, where we require that, on the average,K < M
to obtain reduced bandwidth. This can be obtained in two ways:

� Discarding samples.
� Combining samples.

The methodology for sample combination will be given in Section 4.

2.1. A measure for compression at a system level

The system objective is to minimize the overall noise, as e.g.

minE[jjx� bxjj2];(1)

subject to a channel constraint, as e. g.

E[jjyjj2] � K�2c;max(2)

where�2c;max is the maximum averageenergy per channel sample. We have chosen to limit
the channel power, although other possible limitations could be imposed as e. g. maximum
amplitude or some combination of amplitude and power constraints.

The following observation is crucial for understanding why the suggested source-channel
coding principle works: When the number of samples is reduced, two mechanisms alter the
noise level in the received signal:

1. The sample reduction will inevitably generate approximation noise.
2. The channel noise per channel sample is the same as without compression. After

decompression the number of samples is increased resulting in less channel noise per
signal sample.

At a certain compression ratio these two mechanisms balance. The two contributions in
combined compression/modulation are equal to the noise without any compression,i.e., pure
PAM transmission of the source samples. If this compression ratio isK, this number can be
defined as the systemadvantageor compression.

What implications do we foresee from the overall noise minimization? To reduce the
impact from the channel, it seems like a good idea to make small channel errors result in small
errors in the reconstructed signal. This is equivalent to saying that neighboring symbols in
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the channel signal configuration must correspond to neighboring symbols in the source signal
representation. The opposite, however, is not necessary.

3. Performance limits for the complete image communication system

To assess the merits of the suggested techniques, it is convenient to establish the theoretical
performance limits of a complete image communication system including the channel. This
can be based onchannel capacityand therate-distortion function.

Channel capacity

Assume that the channel is of the Nyquist type. Then the signal samples, separated by a
distance1=2B, can be transmitted without inter-symbol interference if the channel has an
available bandwidthB. Assume that the channel samples have a maximum power level
�2c and are disturbed by additive white Gaussian noise with variance�2n. Then the channel
capacity,C, which is the maximum amount of information that can be transmitted without
errors, is given by

C =
1

2
log2

�
1 +

�2c
�2n

�
bits per channel symbol:(3)

�2c=�
2
n is the channel signal-to-noise ratio (CSNR).

The rate-distortion function

Rate-distortion functions of the typeR = R(D), whereR is the rate andD is the allowable
distortion, are available for certain simple statistical models. A Gaussian source of indepen-
dent and identically distributed samples has the simple R-D function

R =
1

2
log2

�
�2x
�2d

�
bits per source sample,(4)

where�2x is the signal power and�2d is the accepted distortion. The ratio between the two is
called the signal-to-noise ratio (SNR).

OPTA

By combining the channel capacity with the rate-distortion function, we get what is called
the OPTA curve (OPTA=optimal performance theoretically attainable).

AssumeM=K source samples per channel sample are transmitted, implying a sample
compression ofM=K. The following relation must then hold between the rate and the chan-
nel capacity

C = R
M

K
:(5)

Inserting 3 and 4 into this equation and solving for the signal-to-noise ratio, we get

�2x
�2d

=

�
1 +

�2c
�2n

�K=M

:(6)

Plots in a decibel-decibel scale are shown in Figure 3 withK=M as parameter.
The OPTA curves give the best possible performance as a function of the CSNR for different
sample compression factors. As an example, assume that an SNR of 20 dB gives an accept-
able quality of the received signal. Without compression (K=M = 1) a CSNR of 20 dB is
needed. With a 3/2 compression 30 dB CSNR is necessary, while at a compression of 2/1 40
dB is needed.

It should be noted that the above example is valid only for uncorrelated Gaussian signal
and noise, but the principle will be the same for other kinds of statistics.
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FIGURE 3. OPTA curves withK=M as parameter
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FIGURE 4. Mapping from higher to lower dimension (whenK < M ) as a two-stage
process. q(�) indicates approximation whileT (�) represents the mapping between
dimensions. Included also are the additive channel noise sources and the dimension
expanding mappingR(�) in the receiver.

4. Source-to-channel mapping

In this section the principles for combining samples leading to performance close to OPTA
are presented.

Assume thatM samples with identical distribution are collected in a vectoru. These
samples may be a result of signal decomposition, as discussed in Section 4.1. As stated
earlier, channel compression is obtained by reducing the number of samples.

The mapping operations are illustrated in detail in Figure 4, where the symbol reduction
mechanism is split in two stages.

In the figureq(�) represents the approximation where any point inRM is mapped to a
point in a subset of the same space. If this were standardvector quantization(VQ), the subset
would be distinct points inRM (called representation points or codebook vectors). For the
general case the subset will be represented by super-surfaces.T (�) is an invertible transform
that maps all point of this super-surface to a space with dimension equal to the dimension
of the super-surface. As an example, all points on some two-dimensional surface in a three-
dimensional space can be mapped to a two-dimensional channel configuration.

The channel adds noise, indicated by the noise vectorn in Figure 4, to the signal char-
acterized by the CSNR. If the channel were not power or amplitude constrained, the channel
signal could be made large enough to overcome the channel noise problem, and also the ap-
proximation noise problem, as it would be possible to make a dense set of representation
values inRM .
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FIGURE 5. Approximation in two-to-one dimensional mapping.

The receiver part of the system consists ofR(�), which is the mapping from dimension
K back to dimensionM . At high CSNR,R(�) � T�1(�). Often this approximation is also
used at low CSNR, but this is not optimal. The received signal block ofM samples can be
expressed as

bu = R(n+ T (q(u)):(7)

As an example, consider a mapping from two to one dimensions. The approximation
must map all points in the two-dimensional space to a one-dimensional curve as shown in
Figure 5. The mechanism is that each point is approximated by the closest point on the given
curve.

The second stage is the mapping of the curve to the channel. In traditional systems using
VQ, each representation point has an associated index which uniquely specifies the point,
and the decoder knows both the representation points and the numbering system. The index
is then transmitted as a digital symbol. The mapping from the index to the channel can be
done in a variety of ways. A well known technique which accounts for channel effects is the
so-calledindex assignment procedure[2]. The assignment is done in such a way that typical
bit errors cause transitions between spatially close vectors. The mapping of the curve to the
channel needs to have similar properties as in the index assignment procedure. As a mapping
example, we choose for the channel representationcontinuous pulse amplitude modulation
(CPAM). The CPAM amplitude can be chosen proportional to the length of the trajectory
between the origin and the approximation point along the representation curve in the two-
dimensional space. If no transmission errors affect the signal, any amplitude can be put back
on the proper place on this curve by the receiver which, of course, possesses a replica of the
mapping operator. With transmission errors a somewhat modified amplitude will be received
which, mapped back to the two-dimensional space, will encompass a signal error. Because
typical errors are assumed to be small, there are no disasters: there will be minor changes in
one or both of the source signal dimensions.

Another important aspect of the double spiral approximation shown in Figure 5 is that
it runs through the origin and covers the plane in a symmetric manner for the negative and
positive channel amplitudes. This implies that the channel representation will be symmetric
(provided that the source samples are rotation symmetrically distributed), and the transmitted
power will be low because the probability density function is peaky at the origin where the
signal will be represented by small channel amplitudes.
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FIGURE 6. Four characteristic approximations for mapping from two-to-one dimen-
sions. The channel signal-to-noise ratios are 0 dB, 7 dB, 25 dB, and 53 dB [3].

4.1. Mapping optimizations for Gaussian signals and channels

Section 3 introduced the OPTA curve for the case of Gaussian signal and channel noise. In
this section we present mapping optimization results for this case.

Mappings for different CSNRs have been optimized for the 2:1 case based on the mini-
mization of the noise expressed in Equation 1 by insertingbu from Equation 7 withR( � ) =
T�1( � ) andq( � ) representing linear stretching, under the constraint in Equation 2 [3]. Four
characteristic results are shown in Figure 6. The mappings are designed as vector quantizers
with size 256 codebooks, rather than a continuous representation, but including the chan-
nel constraints. The circles show each vector and straight lines are drawn between them to
indicate the continuous approximation case.

It is interesting to note that for very low CSNR the approximation is given by a straight
line in one of the dimensions, and therefore one sample is simply discarded through the ap-
proximation. When increasing the CSNR, the next phase is a horse-shoe approximation,
which does not go through the origin. In the next figure, we see a double spiral which runs
through the origin. And finally, at very high CSNR, the smooth spiral breaks up into some-
thing which may look like fractal behavior (if we extend to an infinite number of points and
infinite CSNR).

The system performance is given in Figure 7 together with OPTA and performance for
smaller codebooks.
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The curves are (from top to bottom): OPTA, optimized coders for codebook sizes:
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Although the performance is close to OPTA, the gap observed in the figure must have a
mathematical explanation. If we again compare with the more well-known vector quantiza-
tion, the problem with dimensionality comes to mind. To get optimal sphere packing, high
dimensional vectors must be employed in VQ. The same effect can be obtained in this case
by e.g. mapping from2M toM dimensions to obtain 2 to 1 compression. However, the gain
is a slowly increasing function ofM . Presently no known method for optimizing for high
dimensions is known.

5. Signal decomposition

Any signal that is meaningful to a human observer has some kind of structure, which for im-
ages can be categorized in terms of objects and textures. This implies that the signal has sta-
tistical dependencies among spatially close values, but also that the local statistical properties
vary. Any efficient signal representation must cope with the variabilities, and remove redun-
dancies originating from the statistical dependencies. A first step, before the source-channel
mapping described above, should be to make some changes to the signal for clustering bits
and pieces into classes, where each class contains statistically independent components with
equal statistical properties. This is usually done by linear transforms, which include filter
banks.

Linear transforms can, in principle, render fulldecorrelationof any stationary process.
This will facilitate use of simpler mappings for close to optimalperformance. We hasten to
add that nonlinear techniques also can be used, and are, of course, more general, because they
are capable of removing higher order statistical dependencies as well.

5.1. Series expansion as a unifying decomposition engine

Assume that the decomposition is separable, so that we can work with one-dimensional sig-
nals. One-dimensional signals related to horizontal and vertical scan lines of images are of
finite length.

Any sequencex(l) of finite length,L, can be exactly represented by a series expansion
usingL linearly independent functions�i = f�i(0); �i(1); : : : ; �i(L� 1)gT ;
i = 0; 1; : : : ; L� 1, as

x(l) =
L�1X
i=0

ui�i(l); l = 0; 1; : : : ; L� 1:(8)
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FIGURE 8. Transform matrix of FIR filter bank. The sub-matricesH contain the unit
sample responses of the subband filters.

This equation represents the reconstruction from the decomposed components

ful; l = 0; 1; : : : ; L� 1g

If the analysis-synthesis system is aperfect reconstruction(PR) system, the expansion coef-
ficients can be found from

ui =
L�1X
l=0

x(l) �i (l); i = 0; 1; : : : ; L� 1;(9)

where thereciprocalor dualbasis is given by

 j = f j(0);  j(1); : : : ;  j(L� 1)gT ; j = 0; 1; : : : ; L� 1:

The mutual relationship between the two bases is then given by

�H
i  j = �ij =

�
1 for i = j
0 otherwise;

(10)

whereH indicates Hermitian conjugate. In other words, the vectors in the two sets aremu-
tually orthogonalif they do not share indices, and their inner product is equal to 1 for equal
indices. If also the basis functions form an orthonormal set, the reciprocal basis is equal to
the basis. We then say we have aunitary system.

In matrix form, Equation 9 can be writtenu = 	Hx, or explicitly2664
u0
u1
...

uL�1

3775 =

2664
 �0(0)  �0(1) : : :  �0(L� 1)
 �1(0)  �1(1) : : :  �1(L� 1)

...
...

...
 �L�1(0)  �L�1(1) : : :  �L�1(L� 1)

3775
2664

x(0)
x(1)

...
x(L� 1)

3775 :
This equation tells us that every coefficient is based, in principle, on all the signal compo-
nents. This is the most general linear transform. However, in images the correlations have
predominantly local support. The local statistics of meaningful images vary. So, if our goal
is to decorrelate the signal, each transform coefficient should depend only on a part of the
input signal. Mathematically, this implies that the matrix	 should be a sparse band matrix.
Even with that constraint, the flexibility of this formulation is enormous. Special cases of this
formulation are square sub-transforms and filter banks. For both these cases the band matrix
consists of repeated sub-structures, as shown in Figure 8. If we make the filter bank adaptive,
the sub-structures will be unequal.
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5.2. Filter banks

Typical analysis filter banks split the input signal in contiguous and slightly overlapping fre-
quency bands, calledsubbands. If the analysis filter bank were able todecorrelatethe signal
completely, the output signal would be white. For all practical signals, complete decorrelation
requires an infinite number of channels.

By performing critical decimation in each of theN channels, the total number of samples
is conserved from the system input to decimator outputs. With appropriate channel arrange-
ment the decimators also serve asdemodulators. That is, the subband signals will, through
this operation, be converted to baseband representation.

The synthesis filter bank has an inverse structure.
Throughout the last two decades an extensive literature on filter banks and filter bank

structures has evolved. Perfect reconstruction (PR) is often considered desirable in subband
coding systems. It is not a trivial task to design such systems, due to the downsampling
required to maintain a minimum sampling rate. Certain filter bank structures inherently guar-
antee PR.

It is beyond the scope of this chapter to give a comprehensive treatment of filter banks.
We shall only present different alternative solutions at an overview level.

We can distinguish between different filter banks based on several properties. In the
following, five classifications are discussed.

i. FIR vs. IIR Although IIR filters have an attractive complexity, their long unit sample
responses and nonlinear phase are obstacles in image coding. The unit sample re-
sponse length influences theringing problem, which is a main source of objectionable
distortion in subband coders. The nonlinear phase makes theedge mirroring technique
impossible [7] for efficient coding of images near their boundaries.

ii. Uniform vs. nonuniform filter banksThis issue concerns the spectrum partitioning in
frequency subbands. It is the general conception that nonuniform filter banks perform
better than uniform filter banks. There are two reasons for that. The first is that our
visual system also performs a nonuniform partitioning, and the coder should mimic
the type of receptor for which it is designed. The second is that the filter bank should
be able to cope with slowly varying signals (correlation over a large region) as well as
transients that are short and represent high frequency signals. Ideally the filter banks
should be adaptive, but without adaptivity one filter bank has to be a good compromise
between the two extreme objectives cited above. Nonuniform filter banks can give the
best tradeoff in terms of space-frequency resolution.

iii. Parallel vs. tree-structured filter banksParallel filter banks are the most general, but
tree-structured filter banks enjoy a large popularity, especially for obtaining octave
band (dyadic) frequency partitioning. The popular sub-class of filter banks called
wavelet filter banksor wavelet transformsbelongs to this class.

iv. Linear phase vs. nonlinear phase filtersThere is no general consensus about the opti-
mality of linear phase. In fact, the traditional wavelet transforms cannot be made linear
phase. There are, however, at least three arguments in favor of linear phase. 1) The
noise in the reconstructed image will be anti-symmetrical around edges with nonlinear
phase filters. This does not appear to be visually pleasing. 2) The mirror extension
technique [7] cannot be used for nonlinear phase filters. 3) Coding gain optimizations
give better results for linear than nonlinear phase filters.
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v. Unitary vs. nonunitary systemsA unitary filter bank has the same analysis and synthe-
sis filters (except for a reversal of the unit sample responses in the synthesis filters with
respect to the analysis filters to make the overall phase linear). Because the analysis
and synthesis filters play different roles, it seems plausible that they, in fact, should
not be equal. Also, the gain can be larger, as demonstrated in Section 5.3, for nonuni-
tary filter banks as long as straightforward scalar quantization is performed on the
subbands.

Several other issues could be taken into consideration when optimizing a filter bank.
These are, among others, the actual frequency partitioning including the number of bands,
the length of the individual filters, and other design criteria than coding gain to alleviate
coding artifacts, especially at low rates. For example, blocking artifacts can be avoided by
ensuring that the different phases in the reconstruction process generate the same noise: the
noise should be stationary rather than cyclo-stationary. This will impose requirements on the
norms of the unit sample responses of the polyphase components [1].

5.3. Optimal filter banks

The gain in subband or transform coders depends on the detailed construction of the filter
bank as well as the quantization scheme. Here the gain for uniform filter banks in combination
with scalar quantization is considered.

Assume that the analysis filter bank unit sample responses are given byfhn(k); n =
0; 1; : : : ; N�1g. The corresponding unit sample responses of the synthesis filters are required
to have unit norm (

PL�1
k=0 g

2
n(k) = 1).

The coding gain of a subband coder is defined as the ratio between the noise using scalar
quantization (PCM) directly on the input signal and the subband coder noise when quantizing
the subbands using optimal bit-allocation as explained in [5,8]:

GSBC =
�2x"

N�1Y
n=0

�2xn

#1=N :(11)

Here�2x is the variance of the input signal while�2xn are the subband variances given by

�2xn =
1X

l=�1

Rxx(l)
1X

j=�1

hn(j)hn(l + j)(12)

=

Z �

��

Sxx(e
j!)jHn(e

j!)j2
d!

2�
:(13)

From these equations it is evident that the subband variances depend both on the filters and
the second order spectral information of the input signal.

For images the gain is often estimated assuming that the image can be modeled as a first
order Markov source (also called an AR(1) process) characterized by

Rxx(l) = �2x0:95
jlj:(14)

(This model is valid only after removal of the image average).
We consider the maximum gain using this model for three special cases. The first is

the transform coder performance using theKarhunen-Lòeve transform. This is an important
reference as all image and video coding standards are based on transform coding. The second
is for unitary filter banks, for which optimality is reached by using ideal filters. The third case
is for nonunitary filter banks, often denotedbi-orthogonalwhen the perfect reconstruction
property is guaranteed. In the nonunitary casehalf whiteningis obtained within each band.
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FIGURE 9. Maximum coding gain as a function of the number of channels for differ-
ent one-dimensional coders operating on a first order Markov source with one-delay
correlation� = 0:95. Lower curve: Karhunen-Lo`eve transform. Middle curve: Uni-
tary filter bank. Upper curve: Unconstrained filter bank, nonunitary case.

Mathematically this can be seen from the optimal magnitude response for the filter in channel
n:

jHn(e
j!)j =

(
c
h
Sxx(ej!)

�2x

i�1=4
for ! 2 �[�n

N
; �(n+1)

N
]

0 otherwise;
(15)

wherec is a constant that can be selected for correct gain in each band.
The inverse operation must be performed in the synthesis filter to make completely flat

responses within each band.
In Figure 9 the optimal coding gains as a function of the number of channels are given.
Notice that the above optimization is done under a bit constraint. The results are therefore

not directly applicable to the resource allocation case in the next section, although we suspect
optimality will not change much.

6. Efficient use of resources

When optimizing the complete image communication system, the channel imposes important
constraints. Here we assume that the channel has limited bandwidth and power. These re-
sources must therefore be assigned to the signal components where they are most efficiently
used.

Assume that the signal (or rather the subband components) can be split intoB classes
with different statistics, where each class has a probabilityPi (which is equal to the relative
occurrence of this class). The classification will be based on the signal variances. Assume
furthermore that there is one mapping device available for each class, which usesfri =
(K=M)i, i = 1; 2; : : : ; Bg channel symbols per signal sample and consumes a channel power
�2ci. These parameters must be chosen to balance the available channel power,�2c , and the
available rater. The rate constraint is given by

BX
i=1

Piri � r;(16)
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FIGURE 10. Signal communication system including signal decomposition and map-
ping allocation.

while the power constraint can be expressed as
BX
i=1

Piri�
2
ci
� r�2c :(17)

Bothri and�2ci must be nonnegative real numbers for physical reasons.
The optimal power and bandwidth allocation can now be found from

min
fri;�2cig

BX
i=1

PiDi(�
2
ci
; ri)(18)

subject to the bandwidth and power constraints, whereDi(�
2
ci
; ri) is the class distortion in-

corporating both approximation (mapping) noise and channel noise.
For the special case of Gaussian signal and channel, an explicit minimization problem

exists:

min
fri;Sig

BX
i=1

Pi(1 + �2ci=�
2
n)

ri�2ui :(19)

The solution to this problem shows that each non-zero channel symbol is allocated an equal
amount of power and the rate for each source symbol is given by [6]

ri =

(
0; if �2i � �2L
1
2C

log2
�2i
�2
L

if �2i > �2L:
(20)

�2L is a parameter which must be chosen to balance Equation 16, and the channel capacity is
given by Equation 3.

In practice it is necessary to limit the number of mappings to a small number. The map-
pings also need to be simple in the sense thatK andM must be small numbers. The selection
of representative mappings will therefore be essential.

7. System model

The main ingredients for putting together a complete practical coder have now been intro-
duced. Based on this, a complete source-channel encoder is shown in Figure 10.

The filter bank decomposes the input signal, resulting in close to decorrelated subband
signals. Each subband typically has different statistics, and due to the variability in images
and video signals, each subband also has fluctuating statistics. The subband signals are there-
fore split into blocks. The block energies are calculated and used as indicators as to which
member of a set of available mappings should be used. The dimension ratioM=K is the
compression ratio. The more important samples are compressed the least, which is achieved
by a direct mapping without compression, or even by dimension increase. For the less im-
portant samples the ratio should be higher. The least important samples are simply discarded.
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FIGURE 11. Subband coder combined with 81 PAM.

These operations should be performed according to the resource allocation described in the
previous section.

In the following we describe two experiments using the mapping principles in conjunction
with subband decomposition. The first example concerns still image communication, while
the second example deals with transmission of video information.

7.1. Still image coding combined with 81 PAM

The following still image coder combines subband coding, allocation ofscalar quantizers,
and mappings from the quantized symbols of different resolution to an 81 pulse amplitude
modulation scheme. The signal is transmitted, as usual, over an ideal Gaussian channel.
There are several simplifications in this example compared to the optimal conditions de-
scribed above. But, as will become apparent, the obtained performance is still remarkable.

The complete block diagram of the system is shown in Figure 11. The figure contains
decomposition by an8�8 filter bank followed by a selection of 4 different quantizers of 3, 9,
27, and 81 levels. The “ters (ternary symbol) allocation” block picks the right quantizer for
each block of samples based on the power levels. This is similar to bit allocation. The only
difference is that three instead of two levels are used. The most interesting part of the system
is the bank of mapping devices. This combines the multilevel symbols into 81 level symbols.
The combinations used are

� Mapping 0: Discard samples
� Mapping 1:3� 3� 3� 3
� Mapping 2:9� 9
� Mapping 3:3� 27
� Mapping 4:81.

One of the mappings is illustrated in Figure 12. The figure also shows the approximations
used. Because the quantizers are scalar, the representation values are located on a rectangular
grid, formed by the Cartesian product between two pdf-optimized scalar quantizers. It should
be noted that VQ, and in particular continuous VQ, would perform better.

The mapping allocation has to be transmitted as side information. Errors in the side
information would be disastrous, as it would cause loss of synchronism between transmitter
and receiver. To avoid side information errors, RS codes in combination with 5 PAM are used
for this part of the code.
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FIGURE 12. Scalar quantization and mappings to 81 PAM for9� 9.
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FIGURE 13. Simulation result for the “Lenna” image. Solid line: proposed system.
Dashed line: random mappings. Horizontal axis: CSNR

Simulation results using this model on the test image “Lena” are shown in Figure 13 for
0:12 symbols/pixel.

The visual quality when transmitting over a noisy channel is demonstrated in Figure 14.
The image to the left has been compressed using the same coder, but the mappings to the
channel have been done at random, corresponding to what you might expect for a standard
communication system. The channel has35 dB CSNR. The image to the right has been
processed by the proposed method and transmitted over a channel with20 dB CSNR.

The complete image coding system is arranged in such a way that the approximation
noise and the channel noise are additive. That is, both types of noise will generate visually
equivalent distortions. If the approximation stage is designed to give pleasing artifacts, so
will the channel distortion. This is very different from most signal transmission systems.

7.2. Video communication system with QAM

In the video encoder the time domain correlation is exploited through differential coding
incorporating motion compensation (as in the H.263 video coding standard). The frame dif-
ference is coded in much the same way as in the still image coder. The complete system is
shown in Figure 15.

The subband samples belonging to Class 1-3 are normalized and quantized using vector
quantizers of three different rates. The blocks having the smallest mean squared value (Class
0) are discarded. The VQ output indices are mapped to the amplitude levels of the QAM
channel symbols by the index maps. For the proposed system, the choices of source vector
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FIGURE 14. Decoded images. Left: random mappings at CSNR=35 dB, right: pro-
posed system at CSNR=20 dB.
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Class M J K
1 2 9 1
2 3 81 2
3 1 15 1

TABLE 1. Source vector dimension (M ), codebook size (J), and channel space di-
mension (K) for each class. The caseK = 1 corresponds to the real or imaginary
axis of a QAM constellation.

dimension (M ), codebook size (J), and channel space dimension (K) for each of the three
classes are listed in Table 1.

The QAM signal constellations have an odd number of amplitudes in each dimension for
power efficient transmission: codebook vectors having the highest probability are mapped
to a channel symbol with zero amplitude. As an example, consider Class 1. The subband
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FIGURE 17. Left: PSNR versus CSNR for the reference system (——) and for the
proposed system (- - -).

samples belonging to this class are divided into vectors of lengthM = 2 and quantized using
a VQ codebook of sizeJ = 9. The 9 codebook vectors are mapped directly to 9 points on the
real or imaginary axis (K = 1) of an 81-QAM signal constellation (MAP1). Such a mapping
is illustrated in Figure 16.

Finally, the side information parameters consisting of the motion vectors, the block class
information, and the quantizer scale factors are transmitted by using a sparse subset of an
81-QAM signal constellation, resulting in larger robustness to channel noise.

To assess the performance of the proposed system a reference system based on the H.263
video coder is used. The H.263 coder is implemented according to [4] without any of the
optional coding techniques, and without the chrominance information. In addition to the
specifications given in [4], resynchronization based on the group of block (GOB) header
as well as error detection and error concealment techniques are used in the decoder. Error
detection is based on detection of illegal codewords, while error concealment is implemented
by repeating information from the previous GOB or from the previous frame whenever an
error is detected. In order to reduce the propagation of errors through subsequent frames, 3
intra-blocks are introduced systematically in each frame at the encoder side. The output bit
stream is mapped to a 16-QAM signal constellation by traditional Gray coding. Note that,
since the H.263 coder uses variable length coding, it is not possible to take the significance
or the meaning of the individual bits into account when choosing the mapping.

The performance of the two systems is compared in Figure 17. The increased robustness
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FIGURE 18. Left: Reference system, frame no. 200, CSNR = 17.0 dB. Right: Pro-
posed system, frame no. 200, CSNR = 17.0 dB.

is significant but not as pronounced as for the still image example. The reason is that the dy-
namic range of the video signal is smaller and thus mapped to a smaller channel constellation.
(81 QAM (corresponding to 9 levels per dimension) versus 81 PAM).

If we pick a channel with CSNR=17 dB, the result will be as shown in Figure 18 for the
two systems.

Because H.263 is based on transform coding, the channel errors will, for this coder, cause
block errors in the decoded image. These tend to appear in clusters as the variable length code
will lose synchronism whenever an error occurs. Correct decoding is only recovered after new
synchronization information is received correctly. We stress that the proposed system does
not have any error protection or synchronization other than for the side information.

The channel configurations are selected to give close to the same performance at CSNR=
22 dB for both coders. As the H.263 coder uses 16 levels and the proposed coder 81 levels,
this indicates that the first coder gives higher compression. The proposed coder needs a
higher rate to get the same performance. This coder could definitely be improved, but as this
is a fixed rate coder and the H.263 uses variable length coding, the standard has an inherent
advantage in terms of rate distortion performance. Still, we obtain the same or improved
quality at almost all CSNRs. This is the advantage of allocating noise to the transmission
system as well as to the quantization.

8. System aspects

In the introductory chapter we argued that it is possible to transmit analog and digital source
signals over the same physical channel while maintaining some sort of optimality for both
sources. As an example, consider a still image coder which can generate both a lossless bit
stream and a sequence representing mapped signal information. This coder could be adapted
to a variety of applications. The transmission of these two signal types over a channel requires
different solutions: error free transmission for the lossless case, and a mode which accepts
channel noise for the lossy coding. In the latter case the signal does not need to be quantized
at all, but can be transmitted as CPAM.

A model of the above system is depicted in Figure 19. In this example it is assumed that
the same decomposition technique can be used for both lossless and lossy compression. In
the lossless case, some type of entropy coding (EC) is used followed by insertion of error
protection bits (FEC). The signal is transmitted using a size�C alphabet in a modem (M1).
For the lossy case, the compression is obtained by dimension reducing mappings as described
above. The obtained signals are either transmitted as time discrete analog signals, or as
signals with an alphabet of size C in a modem (M2). The outputs from the two modems are
multiplexed onto the same physical channel.
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FIGURE 19. Optimal encoding and modulation system for lossless and lossy source coding

There are two reasons why the last system will be able to transmit a significantly larger
number of sources. First of all, lossy compression will give a substantially lower rate even
when the compression degradation is not noticeable. Secondly, the channel alphabet is larger
so that more information can be sent per channel symbol.

It appears practical to make flexible systems like the above for efficient channel utiliza-
tion. For mobile channels this may become an advantageous principle.

9. Discussion

In the designs proposed in this chapter we allow for distortions both in the compression and
transmission phases. By including the channel in the mapping optimizations, very robust
systems are obtained.

We have observed remarkable performance in the simulations. However, there are many
challenges ahead. One major theoretical task is to find efficient modulation methods for
very low CSNR channels. Practical channel models, including fading and other types of
noise, should be included. The gap between the distortion bounds and the performance of the
presented models should be bridged.

We believe thatvariable length codingshould be avoided in the context of radio trans-
mission, although this is presently the prevailing compression technique. To overcome this
problem, compression and transmission specialists should work together. Then new genera-
tions of mobile multimedia systems could be developed with higher capacity, lower prices,
and more graceful quality degradation.
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