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ABSTRACT. This chapter presents a new approach in pattern recognition which relies
on using fast and efficient techniques in the implementation of basic pattern recogni-
tion procedures. More specifically, concerning the pattern preprocessing and feature
extraction stage, a novel method is employed in the design of the relevant algorithms.
Namely, the Image Block Representation methodology is used in the construction
of efficient algorithms for quantitatively analyzing and processing patterns, like 2-
D moment computation for improved feature extraction. It is based on exploiting
the properties of simple operators applied to pattern representation and manipula-
tion. Second, concerning the pattern classification stage, a novel methodology is pre-
sented for designing improved pattern classifiers based on the concept of effectively
training feedforward neural networks using constrained optimization techniques. The
two methods, developed in the present research effort as new architectural principles
for designing improved pattern recognition systems, are evaluated through extensive
experimentation demonstrating reliability and enhanced performance in several real
world problems.

1. Introduction

Many pattern recognition methodologies and design techniques have been developed over the
years and new approaches continue to emerge. These tools apply to the different stages of a
pattern recognition system with the goal to improve its performance. Therefore, a multitude
of rival methodologies exists in the literature for designing feature extraction and selection
processes as well as for designing the classification stage of such systems [1]. The primary
concern in the application of these methodologies is the requirement for enhanced pattern
recognition performance. Computational complexity issues are not usually taken into ac-
count.

The goal of this chapter is to demonstrate the importance of two new concepts as design
principles in the development of fast and efficient pattern recognition systems. The first is the
Image Block Representation approach, which can be involved in the feature extraction stage
of such a system for the fast implementation of pattern preprocessing techniques. The second
is a Constrained Optimization based approach for efficiently training feedforward neural net-
works of the MultiLayer Perceptron (MLP) type, which can be involved in the classification
stage of such a pattern recognition system. These principles lead to effective pattern recog-
nition procedures of reduced order in terms of computational complexity. Both concepts are
involved in the design of an improved Optical Character Recognition (OCR) system. In the
next paragraphs a brief introduction of these principles is presented. As we have mentioned
the first one deals with the problem of effective image representation. The most common
image representation format is a two-dimensional (2-D) array, each element of which has
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the brightness value of the corresponding pixel. For a binary image these values are 0 or
1. In a serial machine, only one pixel is to be processed at a time, by using the 2-D array
representation. Many research efforts have considered the problem of selecting an image
representation suitable for concurrent processing in a serial machine. The need for such ap-
proaches arises from the fact that an image contains a great amount of information, thus ren-
dering the processing a difficult and slow task. Existing approaches to image representation
aim to provide machine perception of images in pieces larger than a pixel and are separated in
two categories: boundary based methods and region based methods. Such approaches include
quadtree representations [2], chain code representations [3], contour control point models [4],
autoregressive models [5], the interval coding representation [6] and block implementation
techniques [7–9]. One common objective of the above methods is the representation of an
image in a more suitable form for a specific operation. This chapter presents a new advan-
tageous representation for binary images, which is called Image Block Representation (IBR)
and constitutes an efficient tool for image processing and analysis techniques [10, 11]. Us-
ing the block represented binary images, real-time computation of 2-D statistical moments is
achieved through analytical formulae. The computational complexity of the proposed tech-
nique is O(L), where (L-1, L-1) is the order of the 2-D moments to be computed. Various sets
of 2-D statistical moments constitute a well-known image analysis and pattern recognition
tool [12–21]. Therefore, IBR can be employed in the feature extraction stage of a pattern
recognition system for the fast calculation of the 2-D moments and other important features
of an input pattern like the critical points, as explained in a following section. Critical point
and statistical moment computations for 2-D patterns using IBR have been precisely involved
as the feature extraction procedures of an improved OCR system presented in a next section.

Concerning the previously mentioned second design principle, which is related to the
classification stage of a pattern recognition system, a constrained optimization procedure is
involved for fast and accurate training of MLPs. MLPs have been hailed in recent years for
their potential and ability to provide efficient solutions to classification, function approxima-
tion, control and optimization problems. In this context, the application of these networks to
interesting technical problems—often requiring processing of numerous and diverse data—
places stringent requirements on learning algorithms in terms of speed, scalability properties
and generalization capabilities. In order to meet these requirements, it will probably be nec-
essary to incorporate in an optimal way various kinds of knowledge about efficient neural net-
work learning into our training algorithms. This knowledge can be problem specific, or can
represent more general statements about the formation of proper internal representations, the
efficient pruning of weights or the optimal handling of learning acceleration techniques, such
as the use of momentum. In terms of these ideas, while the pioneering Back Propagation (BP)
algorithm [42, 43] for training MLPs is a theoretically well established, simple and mathe-
matically elegant method it lacks the capability of manipulating different kinds of knowledge
effectively. Algorithms which have been proposed so far with the aim of exploiting further
knowledge about learning in MLP(e.g. enhancing the role of internal representations during
learning) [52–54] lack the elegance and clarity in objectives and methodology of BP. With
these considerations in mind and following a program of constructing learning algorithms
which preserve the mathematical rigor and clarity in objectives of BP and incorporate differ-
ent forms of knowledge in MLP in the form of well defined constrained optimization tasks, it
has been illustrated that they provide in effect improved learning speed and scalability prop-
erties for MLPs [31, 32, 38–40]. In the present chapter we also demonstrate the enhanced
generalization capabilities which can be acquired by MLPs trained within the proposed con-
strained optimization framework.

The chapter is organized as follows. In the next section the IBR principles are illustrated
and the fast computation of 2-D statistical moments along with the computation of the crit-
ical points of a 2-D pattern is demonstrated. Next, the MLP training procedure involving a
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constrained optimization framework is presented. In the experimental section of the chapter,
the IBR methodology is evaluated first and, afterwards, the performance of an OCR system
incorporating both suggested design principles is investigated. The promising results ob-
tained by utilizing the proposed methodologies as well as their prospects are discussed in the
conclusion.

2. Image Block Representation (IBR)

A bilevel digital image is represented by a binary 2-D array. Without loss of generality, we
suppose that the object pixels are assigned to level 1 and the background pixels to level 0.
Due to this representation there are rectangular areas of object value 1 in each image. These
rectangles, which are called blocks in the terminology of this chapter, have their edges parallel
to the image axes and contain an integer number of image pixels. At the extreme case, the
minimum rectangular area of the image is one pixel.

Consider a set that contains as members all the non-overlapping blocks of a specific binary
image, in such a way that no other block can be extracted from the image (or equivalently each
pixel with object level belongs to only one block). It is always feasible to represent a binary
image with a set of all the non-overlapping blocks with object level, and this representation
is called Image Block Representation (IBR). According to the above discussion, two useful
definitions concerning IBR are formulated:

� Definition 1. Block is called a rectangular area of the image, with edges parallel to the
image axes, that contains pixels of the same value.

� Definition 2. A binary image is called block represented if it is represented as a set of
blocks with object level, and if each pixel of the image with object value belongs to
one and only one block.

According to Definitions 1 and 2, it is concluded that the IBR is an information lossless
representation. Given a specific binary image, different sets of different blocks can be formed.
Actually, the non-unique block representation does not have any implications on the imple-
mentation of any operation on a block represented image. The IBR concept leads to a simple
and fast algorithm, which requires just one pass of the image and a simple bookkeeping pro-
cess. In fact, considering a binary imagef(x; y); x = 0; 1; : : : ; N1 � 1; y = 0; 1; :::; N2 � 1,
the block extraction process requires a pass from each line y of the image. In this pass all
object level intervals are extracted and compared with the previous extracted blocks. In the
following, an IBR algorithm is given.

Algorithm 1: Image Block Representation.

1. Consider each line y of the image f and find the object level intervals in line y.
2. Compare intervals and blocks that have pixels in line y-1.
3. If an interval does not match with any block, this is the beginning of a new block.
4. If a block matches with an interval, the end of the block is in the line y.

As a result of the application of the above algorithm, we obtain a set of all the rectangular
areas with level 1 that form the object. A block represented image is denoted as:

f(x; y) = (bi : i = 0; 1; : : : ; k � 1)(1)

wherek is the number of the blocks. Each block is described by four integers, the coordinates
of the upper left and lower right corner in vertical and horizontal axes. The block extraction
process is implemented easily with low computational complexity, since it is a pixel checking
process without numerical operations. Fig. 1, illustrates the blocks that represent an image
of the character B. The optimum representation is characterized by the minimum possible
number of blocks. Different IBR algorithms, which may result in smaller number of blocks
at the cost of the increased processing time, may be implemented. Specifically, the algorithm
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FIGURE 1. (a) Image of the character B. (b) The extracted blocks. (c) The groups of
blocks. (d) The critical points.

for finding the maximal empty rectangle [28–30] in an area may be applied recursively: at
each stage the points of this rectangle are labelled as background points, in order to apply
the algorithm recursively to the remaining points. The time complexity of this method is
O(n log n), where n is the number of the points of the area at each recursion. Therefore, the
selection of the optimum representation implies an additional computational cost, which may
compensate the achieved savings due to the minimum number of blocks.

2.1. Computation of Moments Based on IBR

In pattern recognition applications, a small set of lower order moments is used to discrimi-
nate among different patterns. The most common moments are the geometrical moments, the
central moments, the normalized central moments and the moment invariants [18,19]. Other
sets of moments are the Zernike moments and the Legendre moments (which are based on the
theory of orthogonal polynomials) [20, 22], and the complex moments [21]. One main diffi-
culty concerning the use of moments as features in image analysis applications is the implied
high computational time. A number of approaches that reduce the computational time con-
cerning calculation of moments have appeared [4], [24–26]. In [24–26], the problem has been
reduced from 2-D to 1-D using Green’s theorem; this approach reduces the complexity from
O(N2) to O(N), since only the boundary pixels are considered and the length P of the bound-
ary is linearly related to

p
A , where A is the object area. In [4] control point models based

on least-square normalized B-splines are used for the representation of the object boundary,
where the complexity of the moments computation is related to the shape model order and
independent of the scale. The computational cost of this method is comparable to the cost of
the proposed method but, mainly due to the deviations of the boundary representation model,
the moment values are significantly affected. In [27] the computation formula of each central
moment has been considered as an impulse response of a filter, which is then transformed
to the z-domain and the transfer function of the corresponding digital filter is obtained. This
latter approach is also inferior to the block based computation, since it is dependent on the
image size and its computational complexity for the calculation of the 16 central moments up
to the order (4,4) of an image withN �N points is4N2 + 16N + 80 additions and only 32
multiplications or power calculations

2.1.1. Geometrical moments.Consider a binary digital image f(x,y), withN1 pixels in the
horizontal axis andN2 pixels in the vertical axis. The 2-D geometrical moments of order
(p,q) of the image are defined by the relation:

mpq =
N1�1X
x=0

N2�1X
y=0

xpyqf(x; y); p; q = 0; 1; 2; : : :(2)
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Since the background level is 0, only the pixels with level 1 are taken into account in the
computation of the moments. Thus, the 2-D geometrical moments of order (p,q) of the image
f(x; y) are defined by the relation:

mpq =
X
x

X
y

xpyqf(x; y); 8x; y; f(x; y) = 1(3)

Specifically, if the imagef(x; y) is represented byk blocks, as it is described in (1), all
the image pixels with level 1 belong to thek image blocks and therefore (3) may be rewritten:

mpq =
k�1X
i=0

mbi
pq =

k�1X
i=0

x2;biX
x=x1;bi

y2;biX
y=y1;bi

xpyq(4)

wherex1;bi ; x2;bi andy1;bi; y2;bi are the coordinates of the blockbi with respect to the hori-
zontal axis and to the vertical axis, respectively. In (4), if the rectangular form appearing
within the blocks is taken into account, then the geometrical moments of one block b, with
coordinatesx1b, x2b, y1b, y2b, are given by

mb
pq =

x2;bX
x=x1;b

y2;bX
y=y1;b

xpyq = xp1b

y2;bX
y=y1;b

yq + (x1b + 1)p
y2;bX

y=y1;b

yq + : : :+ xp2b

y2;bX
y=y1;b

yq(5)

=

2
4 x2;bX
x=x1;b

xp

3
5
2
4 y2;bX
y=y1;b

yq

3
5

Using the rectangular form appearing within the block, the computational effort, which is
characterized by the complexityO(N2) for the calculation of moments using (2), is reduced
to O(N) for the calculation of moments using (5). For the computation of (5), it is adequate
to calculate the following summations of the powers of x and y :

Sp
x1b;x2b

=

x2bX
x=x1b

xp; Sq
y1b;y2b

=

y2bX
y=y1b

yq; x; y; p; q 2 Z(6)

Moreover, taking into account the known formulae:

S1
1;n =

n(n + 1)

2

S2
1;n =

n(n + 1)(2n+ 1)

6
(7)

S3
1;n =

n2(n+ 1)2

4

S4
1;n =

n(n + 1)(2n+ 1)(3n2 + 3n+ 1

30

and in the general case for sums of powers greater than 4, the formula�
m+ 1

1

�
S1
1;n +

�
m + 1

2

�
S2
1;n + : : :(8)

: : :+

�
m + 1
m

�
Sm
1;n = (n+ 1)m+1 � (n+ 1)
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wherem;n 2 Z and �
i
j

�
=

i!

j!(i� j)!

are the number of combinations ofi objects takenj at a time, it is concluded that the summa-
tion Sp

x1;x2 can be directly calculated by the following analytical formulae:

S1
x1b;x2b

= S1
1;x2b

� S1
1;x1b�1

=
x2b(x2b + 1)� x1b(x1b � 1)

2

S2
x1b;x2b

= S2
1;x2b

� S2
1;x1b�1

=
x2b(x2b + 1)(2x2b + 1)� x1b(x1b � 1)(2x1b � 1)

6

S3
x1b;x2b

= S3
1;x2b

� S3
1;x1b�1

=
x22b(x2b + 1)2 � x21b(x1b � 1)2

4
S4
x1b;x2b

= S4
1;x2b

� S4
1;x1b�1

=
x2b(x2b + 1)(2x2b + 1)(3x22b + 3x2b � 1)

30

�x1b(x1b � 1)(2x1b � 1)(3x21b + 3x1b � 1)

30

Sp
x1b;x2b

=

(x2b + 1)p+1 � xp+11b � (x2b � x1b + 1)�
�

p+ 1
1

�
S1
x1b;x2b

p+ 1

�

�
p+ 1
2

�
S2
x1b;x2b

� � � � �
�

p+ 1
p� 1

�
Sp�1
x1b;x2b

p+ 1
(9)

for all p 2 Z+

The summationSq
y1b;y2b

is computed in a similar manner. Fast computation of the 2-D ge-
ometrical moments of one block, according to (5), is achieved using the above simple and
analytical formulae.

According to (4), the 2-D geometrical moments of the whole image are computed as the
summation of the 2-D geometrical moments of all the individual blocks of the binary image.

2.1.2. Central moments.The 2-D central moments of an image f(x,y) are invariant under
image translation and they are defined as

�pq =
N1�1X
x=0

N2�1X
y=0

(x� x)p(y � y)qf(x; y)(10)

wherex = m10

m00

; y = m01

m00

are the coordinates of the centroid. Since all the image pixels with
level 1 belong to the k image blocks, (10) may be rewritten as

�pq =
k�1X
i=0

�bipq =
k�1X
i=0

x2;biX
x=x1;bi

y2;biX
y=y1;bi

(x� x)p(y � y)q(11)

wherex1;bi ; x2;bi; y1;bi; y2;bi are the coordinates of the block. The coordinates of the centroid
in equation (11), refer to the center of the gravity of the whole image and not to the centroid
of each block. The computation of the geometrical momentsm00; m10; m01 using (5) and (9)
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ensures the fast computation of the centroid of the image. In (11), if the rectangular form
appearing within the blocks is taken into account, then the central moments of one block b,
with coordinatesx1b; x2b; y1b; y2b, are given by

�bpq =

x2bX
x=x1b

y2bX
y=y1b

(x� x)p(y � y)q =

"
x2bX

x=x1b

(x� x)p

#"
y2bX

y=y1b

(y � y)q

#
(12)

The complexity is reduced fromO(N2) to O(N). For the computation of (12), it is adequate
to calculate the two summations of the product. Using the mathematical identity:

(c� d)m = cm �
�

m
1

�
cm�1d+

�
m
2

�
cm�2d2 � : : :+ (�1)mdm(13)

it is concluded that
x2bX
x=1

(x� x) = S1
1;x2b

� x2bx

x2bX
x=1

(x� x)2 = S2
1;x2b

� 2xS1
1;x2b

+ x2bx
2(14)

x2bX
x=1

(x� x)3 = S3
1;x2b

+ 3x2S1
1;x2b

� x2bx
3

x2bX
x=1

(x� x)4 = S4
1;x2b

� 4xS2
1;x2b

+ 6x2S2
1;x2b

and
x2bX

x=x1b

(x� x) =

x2bX
x=1

(x� x)�
x1b�1X
x=1

(x� x)

= S1
x1b;x2b

� (x2b � x1b + 1)x

x2bX
x=x1b

(x� x)2 =

x2bX
x=1

(x� x)2 �
x1b�1X
x=1

(x� x)2

= S2
x1b;x2b

� 2xS1
x1b;x2b

+ (x2bp� x1b + 1)x2(15)
x2bX

x=x1b

(x� x)3 =

x2bX
x=1

(x� x)3 �
x1b�1X
x=1

(x� x)3

= S3
x1b;x2b

� 3xS2
x1b;x2b

+ 3x2S1
x1b;x2b

+ (x2b � x1b + 1)x3

x2bX
x=x1b

(x� x)p = Sp
x1b;x2b

� x

�
p
1

�
Sp�1
x1b;x2b

+ : : :+ (�1)p(x2b � x1b + 1)xp

8p 2 Z+

whereSp
x1b;x2b

have been calculated from (9). The above analytical formulae (15) are used for
the fast computation of the factor

Px2b
x=x1b

(x � x)p of the central moments (12) of the block
b. The factor

Py2b
y=y1b

(y � y)q appearing in (12) is calculated in a similar manner. The fast
computation of the central moments of each block, using the proposed method, ensures the
fast computation of the central moments of the whole image, according to (11).
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2.1.3. Normalized central moments and moment invariants.The 2-D normalized central mo-
ments of an image f(x,y) are defined asnpq =

�pq
�

00

where
 = p+q
2

+ 1; p+ q = 2; 3; : : : and
�pq are the corresponding central moments of the image. The central moments are required
for the computation of the normalized central moments.

A set of seven moments, which are invariant to translation, rotation and scaling factors
and called moments invariants [18, 19], is derived from the normalized central moments.
Therefore, the fast computation of the central moments ensures the fast computation of the
normalized central moments and of the moments invariants.

2.2. Computational Complexity in Moment Estimation Using IBR

It is clear from the IBR algorithm that block extraction is a pixel checking process without
involving any numerical operations, and requires only one pass from each point of the image.
Therefore, IBR is fast and the required time is proportional to the image size. However, in
pattern recognition applications, IBR is applied to images of separated objects rather than to
the whole image. In a number of such applications it results that computation time for block
extraction is much less than the time for image file reading and image segmentation.

Consider a binary image that contains one rectangular block with level 1. For simplicity
and without loss of generality, assume a square block withM �M points. In the sequel we
estimate the computational complexity required for the computation of the geometrical mo-
ments of order up to(L�1; L�1). The analysis concerning the computational complexity of
other sets of moments may be given in a similar manner. It is seen from (2) that direct com-
putation of one geometrical moment requiresM2 power computations,M2 multiplications
andM2 additions. For the computation ofL2 moments,L2M2 power computations,L2M2

multiplications andL2M2 additions are required.
Consider (5), which exploits the rectangular form appearing within the block. For the

computation of the factorSp
x1b;x2b

, LM power calculations andLM additions are required.
The same number of operations are required for the computation of the factorSq

y1b;y2b
. There-

fore, for the computation ofL2 geometrical moments using (5), 2LM power calculations,L2

multiplications and 2LM additions are required for one block. Now consider the analytical
formula (9), where the same binomial coefficients appear for any specific geometrical mo-
ment of each block of the image; therefore the corresponding computational effort is reduced
by the number of blocks. Moreover, the factorials for the determination of the binomial coef-
ficients require least effort,i.e., one multiplication for the calculation of eachm! in terms of
(m� 1)!. There are two alternative approaches for the execution of the power calculations in
(9). In the first one, 2 power calculations are considered. Alternatively, the calculation ofxp1b
and(x2b + 1)p+1 may be seen as 2 multiplications in terms ofxp1b and(x2b + 1)p+1 respec-
tively. In the following analysis the first approach is used. The factorsSi

x1b;x2b
, i = 1,2,...,p-1,

that have been computed previously and their values stored, are used for the computation of
theSp

x1b;x2b
. Thus the computation of theSp

x1b;x2b
from equation (9) requires 2 power calcu-

lations, p multiplications and p additions. The computation of the sum ofSq
y1b;y2b

requires 2
power calculations, q multiplications and q additions. The calculation of all theL2 moments
requires 4L power calculations,2L2 � L multiplications andL2 � L additions.

Table 1 demonstrates the above results. The complexity is reduced from 2-D format (2)
to 1-D using image block representation and (5). Moreover, the complexity is independent of
the size when the analytical formula (9) is used. The required number of power calculations,
multiplications and additions for the computation of the geometrical moments up to the order
(4,4) of a block withM �M pixels, where M varies from 1 to 100, is shown in Figure 2.

LEMMA 2.1. Assuming that the complexity of raising a number to a power is the same
as one multiplication, the computation of (5) and (9) requiresL2 + 2LM and 3L2 + 2L
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Operations Direct Computation Computation from Computation from
Number from equation (2) equation (5) equation (9)
power calculations L2M2 2 L M 4 L
multiplications L2M2 L2 2L2 � L
additions L2M2 2 L M L2 � L

TABLE 1. The required number of operations for the computation of geometrical
moments up to the order (L-1,L-1), of one block withM �M pixels.

FIGURE 2. Number of operations for the geometrical moments computation up to
the order(L � 1; L � 1), of aM �M block, from equations (2), (5) and (9) with
L = 5 andM = 1; 2; : : : ; 100. (a) Number of power calculations. (b) Number of
multiplications. (c) Number of additions.

multiplications respectively. Comparing the above number of multiplications, (5) has less
computational complexity than (9) when

L2 + 2LM � 2L2 + 3L =)M � L+ 3

2
(16)

However, in typical pattern recognition applications the moments usually are calculated
up to the order (4,4). The higher order moments are not used since they are very sensitive to
noise. From (16), it becomes clear that forL = 5, if an edge of a block contains less than 4
pixels it is faster to compute the sum of powers of the variable that corresponds to that edge
directly using (5) instead of (9).

Consider the worst case of anN � N chessboard image withN2=2 blocks. Since now
M = 1, according to the criterion of Lemma 2.1, the computation using (5) requiresLN2

power calculations,L2N2=2 multiplications andLN2 additions. Using (2),L2N2=2 power
calculations,L2N2=2 multiplications andL2N2=2 additions are required. Thus, IBR for the
computation of moments is still computationally attractive in comparison with the use of (2).

2.3. Critical Points Extraction Involving IBR

An object normalization procedure is first executed in order to facilitate rotation invariant
descriptions of the objects. Specifically, the maximal axis of the object is found and the
whole object is rotated in such a way that the maximal axis has a vertical position and the
upper half of the image object contains most of the object’s mass. At this point, it is necessary
to give the following definitions :
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1. Group is an ordered set of connected blocks, in such a way that all its intermediate
blocks are connected with two other blocks, while the first and last blocks are con-
nected with only one block.

2. Junction pointis a point that it is connected with two other points.
3. End pointis a point that it is connected with only one other point.
4. Tree pointis the point that it is connected with more than two other points.
5. Critical point is a junction or an end or a tree point.

In this chapter, a fast non-iterative critical points detection method for block represented
binary images is presented. The method has low computational complexity, extracts only
critical points and to a degree appears to be immune to locality problems. This is achieved by
the use of a suitable neighborhood in each case. Specifically, groups of connected blocks are
formed. Each group is terminated when an adjacent block does not exist for its continuation,
or when two or more blocks exist for the continuation of the group.

Each group defines a local neighborhood and all the necessary processing takes place in
this neighborhood. Using a few simple rules for the processing, the groups are checked and
labeled by certain categories:

1. Vertical Elongated groups. The absolute value of the angle of these groups with the
horizontal axis is usually greater than30�. The width of each block of a vertical elon-
gated group should not exceed a threshold value. The connections among the blocks
result in junction points, which belong to the thinned line that results from the group.
For each pair of connected blocks, one junction point (the central point of the common
line segment of two connected blocks) is extracted. For each block we check if the
distance among its junction points and its extremities (i.e., the central points of the
edges of the small dimension) of the block exceeds a threshold value.

2. Horizontal Elongated groups. The absolute value of the angle of these groups with
the horizontal axis is smaller than300. The width of a horizontal elongated group is
significantly greater than its height and also its height appears to have small variation.
For the extraction of the junction points the algorithm starts from the left end of a
horizontal elongated group and moves to the right with constant width steps. At each
step a junction point is extracted at the middle of the height of the group at this vertical
position.

3. Angle groups. The angle groups are connected with two other groups that lie on the
same vertical or horizontal side of the angle group. The width and the height of an an-
gle group are usually small. An angle group should not be connected to a noisy group.
If a group has been labeled an angle group and it is connected with a noisy group, then
the label “angle” is replaced by the horizontal elongated label or the vertical elongated
label. Three junction points are extracted from an angle group, for the formulation of
an angle.

4. Noisy groups. The noisy groups have width and height less than a threshold and they
are connected to only one group, which is not an angle group. In most cases, the noisy
groups are connected from the left or right side to vertical elongated groups or from
the top or bottom side to horizontal elongated groups. In these cases the extraction of
junction points from the noisy groups is not acceptable, otherwise a noisy end point
would be created. The noisy groups are branches of the object that have small height
and width. Usually, junction points are extracted from the noisy groups if and only if
the noisy group is connected at the ends of an elongated group.

Fig. 1 demonstrates (a) an image of the character B, (b) the extracted blocks, (c) the
groups of blocks and (d) the critical points.
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3. The Constrained Optimization Framework for Efficiently Training MLPs

To fill in the gap between theory and real world pattern recognition applications, it is im-
perative to study the performance of MLP learning algorithms in large scale problems and
networks. For instance, OCR tasks are good examples of such large-scale problems. Usually
it is not only possible, but also essential, to include a large dataset of different examples of
each character in the training set, if acceptable recognition rates are to be achieved. More-
over, the relatively large number of categories and input features calls for networks with a
large number of weights. Under these circumstances, stringent requirements are placed on
learning algorithms in terms of speed, scalability properties and generalization capabilities.
The proposed constrained optimization based MLP training framework has been designed to
meet these needs.

In a series of papers [31,32,38–41] the first author has proposed that a successful way of
improving these properties of MLP learning algorithms is to incorporate different forms of
knowledge about learning in MLP in the form of well-defined constrained optimization tasks.
We have introduced a framework of basic requirements for incorporating knowledge in MLP
learning algorithms [38]. This framework was used as an engine for developing different
Algorithms for Learning Efficiently using Constrained Optimization techniques (ALECO).
The second in the series of these algorithms (ALECO-2) was based on the incorporation of
knowledge about optimal use of momentum acceleration techniques. This algorithm was
tested using several different benchmark training tasks (encoder, multiplexer, counter and
XOR problems) and its performance was compared to that of several different MLP training
algorithms (on-line and off-line back propagation (BP) [42, 43], Quickprop [44] and Delta-
bar-Delta [45]) [31,40]. As regards large-scale problems (multiplexers and encoders with up
to 2048 input patterns and 4360 weights), which are of interest in this work, the following
results were obtained:

� From all algorithms tried, only on-line BP and ALECO-2 exhibited good convergence
ability in large-scale problems. By contrast, off-line BP, Quickprop and Delta-bar-
Delta exhibited difficulties in achieving convergence in all large-scale tasks tried.

� Concerning learning speed, ALECO-2 was found to clearly outperform its closest rival
(on-line BP) in all large-scale tasks. Moreover, ALECO-2 showed a relatively small
standard deviation in the distribution of epochs needed to successfully complete a task,
thus exhibiting reliability of performance as regards learning speed.

These results illustrate the excellent capabilities of ALECO-2 as regards learning speed
and scalability properties and make it an excellent candidate for training MLPs to solve large-
scale pattern recognition problems such as the OCR tasks studied here. This chapter presents
our first opportunity to assess the generalization ability of ALECO-2 using extensive multi-
font character datasets and compare it to the ability of on-line BP, whose good performance
in large-scale problems is well known [46]. The patterns which are the input vectors of these
MLPs employed in the suggested OCR system come from the feature extraction stage devel-
oped in the previous section and are based on the IBR principle.

3.1. Derivation of ALECO-2

Augmenting the BP algorithm with momentum is inherently heuristic in nature, although
attempts have been made to invest it with theoretical background [47, 48]. Thus, the mathe-
matical rigor of gradient descent—where much information is available in the form of conver-
gence theorems [49, 50]—is compromised; in return, it is expected that bigger weight steps
can be achieved by filtering out high frequency variations of the error surface in the weight
space [42]. ALECO-2 is based on the idea of obtainingoptimal weight steps by optimiz-
ing, at each epoch of the learning algorithm, the Euclidean distance between the current and
previous epoch weights [31]. In this way, improved learning speed is achieved.
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Consider a multilayered feedforward MLP with one layer of input,M layers of hidden
and one layer of output units. The units in each layer receive input from all units in the
previous layer. We denote the unit outputs and synaptic weights respectively byO

(m)
jp and

w
(m)
ij . The superscript(m) labels a layer within the structure of the MLP (m = 0 for the

input layer,m = 1; 2; : : : ;M for the hidden layers,m = M + 1 for the output layer),i andj
denote units in layers(m�1) and(m) respectively andp labels the input patterns.

The training procedure in ALECO-2 solves,for each epoch, the following problem: First,
change the cost function

E =
1

2

X
jp

"jp; "jp =
�
Tjp � O

(M+1)
jp

�2
(17)

by a specified negative amount�E. After a sufficient number of epochs, the accumulated
changes to the cost function should suffice to achieve the desired input-output relation. Sec-
ond, simultaneously maximize the squared Euclidean distance

� =
X
ijm

�
w
(m)
ij �W

(m)
ij

�2
(18)

between the weight vectorsw at the present epoch andW at the immediately preceding
epoch, in order to achieve optimal weight steps. This problem is solved in an elegant way
by a straightforward generalization of the optimal control method introduced by Bryson and
Denham [51].

ALECO-2 is an iterative procedure, whereby the synaptic weightsw
(m)
ij are changed by

small amountsdw(m)
ij at each iteration so that the quadratic formX

ijm

dw
(m)
ij � dw(m)

ij

takes on a prespecified value(�P )2. Thus, at each epoch, the search for an optimum new
point in the weight space is restricted to a small hypersphere centered at the point defined by
the current weight vector. If�P is small enough, the changes inE and� induced by changes
in the weights can be approximated by the first differentialsdE andd�. The problem then
amounts to determining, for given values of�P and �E, the values ofdw(m)

ij , so that the
maximum value ofd� is attained.

Maximization ofd� is attempted with respect tow(m)
ij andO(m)

jp . In the language of
non-linear programming, the synaptic weights correspond to decision variables and the unit
outputs correspond to state (solution) variables. These quantities must satisfy the state equa-
tions,i.e., the constraints describing the network architecture

f (m)
jp (O;w) = g

 X
i

w(m)
ij O(m�1)

ip

!
� O(m)

jp = 0; m = 1; : : : ;M +1(19)

whereg is the logistic functiong(x) = 1=(1 + exp(�x)). Biases are treated as weights
emanating from units with constant, pattern-independent activation equal to one. Apart from
the state equations, the following conditions should be satisfied at each epoch of the algorithm

dE � �E = 0;
X
ijm

dw
(m)
ij � dw(m)

ij � (�P )2 = 0(20)

To maximized�, suitable Lagrange multipliers�jp(m)
E , �jp(m)

� of thef (m)
jp are introduced

to take account of the architectural constraints. Two further multipliers�1 and�2 are also
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needed to take account of the respective terminal conditions 20. Requiring thatd� be maxi-
mum (d2� = 0, d3� < 0), we are led to the following equations for the Lagrange multipliers

�
jp(M+1)
E = O

(M+1)
jp �T (M+1)

jp

�
ip(m)
E =

X
j

�
jp(m+1)
E w

(m+1)
ij O

(m+1)
jp

�
1�O

(m+1)
jp

�
(21)

1 � m �M

and

�
jp(m)
� = 0 (1�m� M+1)

�2 =
1

2

�
IEE(�P )2 � (�E)2

I��IEE � I2E�

�
�1=2

(22)

�1 = (IE� � 2�2�E)=IEE

where

I�� =
X
ijm

(Fijm)
2 ; IEE =

X
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X
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JijmFijm(23)

with

Fijm = 2
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w
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�
; Jijm =

X
p

�
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(m)
jp

�
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�
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Moreover, the following updating rule is obtained for the weights:

dw
(m)
ij =

1

2�2
(Fijm � �1Jijm)(25)

=

�
IEE(�P )2 � (�E)2

I��IEE � I2E�

�1=2 �
Fijm � IE�

IEE
Jijm

�
+
Jijm
IEE

�E

The detailed calculations are given in [31]. Note the boundj�Ej � �P
p
IEE imposed on the

value of�E by equation 26. We always use a value�E =���PpIEE where� is a constant
between 0 and 1. Thus�P and� are the only free parameters of the algorithm which can be
tuned to obtain optimal performance. It is shown in [31] that this guarantees convergence to
global or local minima of the cost function for small enough�P .

4. Experimental Results

In the experimental study of this research effort we first evaluate the IBR methodology alone.
Then we design an OCR system for evaluating both the IBR and ALECO-2 frameworks.

4.1. Evaluating the IBR approach

Concerning the IBR approach we consider the test images of Fig. 3. In Table 2 the number
of pixels with object level, the number of rows with object pixels, the number of blocks
extracted from these images using Algorithm 1, the required storage for 2-D images and the
required storage for block represented images are shown. It can been seen that storage of
blocks requires less space in comparison with the required storage for 2-D images. In images
with a high entropy value, like images of text where a significant number of small blocks
appears, the required time for the computation of the moments is reduced, using image block
representation, by a factor between 10 and 50. In images with large areas of object level, like
images of industrial parts, aircraft, shipsetc., the time reduction factor is much greater. The
computation time of moments up to the order (4, 4), for the set of the test images of Fig. 3,
using the four different methods described earlier, is given in this Section. These methods are
(i) regular computation from (2), (ii) IBR and use of (5), (iii) IBR with the analytical formula
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(a) (b) (c) (d)

FIGURE 3. A set of test images. (a) Image of the island Corfu of 512x512 pixels. (b)
Image of the island Mikonos of 512x512 pixels. (c) Image of the island Santorini of
512x512 pixels. (d) Aircraft image of 512x697 pixels.

Pixels with Rows with Number of Storage for the Storage for
Image object level object pixels blocks 2-D image blocks

(bytes) (bytes)
Image of the
island Corfu 41605 411 250 32768 2000
Image of the
island Santorini 63203 474 257 32768 2056
Image of
an aircraft 118831 494 397 44608 3176

TABLE 2. The number of pixels with object level, the number of rows with object
pixels, the number of blocks, the required storage for 2-D images and the required
storage for the block represented images for the set of test images of Figure 3.

(9) and (iv) IBR with the criterion provided by Lemma 2.1. The geometrical moments of
the test images of Fig. 3 have been computed up to the order (4,4) and the results show that
the use of IBR and (5) results in a reduction of computation time by a factor of 20. The use
of the analytical formula (9) decreases the computation time by a factor of 200. Using the
criterion provided by Lemma 2.1, the computation time is decreased by a factor of hundreds
or thousands, since in most of the extracted blocks one edge has width less than 4 points.

4.2. Setting up the OCR System

Concerning the evaluation of the suggested pattern recognition design principles, extensive
experiments were conducted to test their efficiency on specific OCR tasks involving typeset
Greek characters. These experiments involve different combinations of features—Convo-
lutional features and Critical Points-based features using IBR—and classifiers—Minimum
Distance (MDC), on-line BP and ALECO-2. The spatial resolution of characters in all these
experiments is 64 X 64 pixels.

Regarding the first kind of features which are compared in the suggested OCR system,
namely, convolutional features, the pattern representation scheme was designed so as to si-
multaneously achieve:

� Filtering out of the noise in the pattern images by the successive application of a low
pass filtering procedure.

� Efficient image encoding that takes into account that neighboring pixels are highly cor-
related [33] and forms a compressed pattern image representation of reduced dimen-
sionality by removing redundant information. This is very important for the neural
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classifiers in the next stage of the proposed system, since it is well known that im-
proved generalization performance is dependent on the number of free parameters of
the model [34,35].

These criteria led directly to the employment of the Laplacian pyramid theory [33]. A one
level Gaussian pyramid was used with the following features:

� Two generating kernels (Gaussian masks), were used (a 5-by-5 mask and a 4-by-4
mask). The pattern of weightsh(m;n) of the generating kernels was chosen subject
to the constraints of normalization and equal contribution for the different levels [36],
as well as equality for all the weights at a given level. This last constraint was selected
for its simplicity instead of the separability one [33] and our experiments validated its
efficiency.

� In order to achieve higher dimensionality reduction rates, we did not apply the convolu-
tion scheme required in [33]. Instead of performing the normal convolution operation
as in [33, 37], a different, more complex, convolution scheme of the original rastered
imageg0 was employed. The resulting pattern image is derived as follows: We define
gl1 = h5

L
g0 andgl2 = h4

L
g0 as the convolved images obtained by convolvingg0

(the original pattern) with the generating kernelsh5 (5-by-5) andh4 (4-by-4) respec-
tively. This scheme takes into account different correlations of the neighboring image
pixels. The final pattern imagegl, which is the input of the classifier, is obtained by
keeping the most important terms ofgl1 andgl2. It has found been experimentally that
by utilizing the first 41 such terms we achieve the best performance of our OCR system
in the experiments described next.

Regarding the second kind of features involved in the suggested OCR system, namely, the
Critical Points extracted using the IBR methodology previously depicted, it could be men-
tioned that the pattern vector had 256 components. This number was selected to correspond
to the maximum number of critical points extracted from any one of the training images.

All experiments were carried out using a software platform developed on a 266MHz
Pentium Windows-95 PC. Using a menu driven environment we can select an already im-
plemented method for every stage of the recognition process (preprocessing, segmentation,
normalization, feature extraction and classification) and test the recognition rate of our OCR
system. The platform can process several pre-recognized characters from many fonts for au-
tomatic recognition rate extraction. Moreover, it can use several training sets and test their
performance on any TIFF image which contains typewritten characters. An attractive feature
of this OCR platform, which substantially facilitated the experimental part of this work, is
that the user can easily create character bases from TIFF character images. Character sets can
then be created containing user-specified parts of these character bases, to be used as training
or recognition sets in the classifying procedure.

4.3. Training and Test Character Sets

For reasons of fair comparison, all experiments were conducted using the same character sets
for training and recognition. Both natural and artificial sets were used. The natural sets were
produced using images of plain text of more than 1500 Greek characters. The artificial sets
were made from images containing 10 versions of 32 different characters (lower-case Greek
letters) for a total of 320 characters. We used 6 different character fonts both in the artificial
and the natural sets: Arial, Arc, Times, Bold Arial, Bold Arc and Bold Times. We also used 2
different contrast regulations in the scanning software for the character sets, which provides
2 different character thicknesses. The scanning resolution was stable for all the experiments
at 300 dpi though the size of the characters varied from set to set. We chose

� the junction of Arial, Arc and Times artificial character bases (total of 960 characters)
as our training set. More specifically, the training set consisted of the following:
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Arc setWe used an HP scanner at 300 dpi resolution with the default contrast reg-
ulation in the scanning software in order to binarize a text printed from an HP
printer with 320 characters (32 classes with 10 prototypes each) from MS Win-
dows Arc font. We produced a 731K TIFF image from which we derived the Arc
set.

Arial set The same procedure as above was followed using the MS Windows Arial
font.

Times setThe same procedure as above was followed, but using the MS Windows
Times font.

� Various artificial and natural character sets were used for recognition (testing) pur-
poses. In particular, 3 natural sets of Arial and Times fonts (total of 4647 characters)
and 3 artificial sets of Bold Arial, Bold Arc and Bold Times fonts (total of 960 charac-
ters) were used as test sets. These recognition sets have the following specifications:

text1 setThe scanner, printer and scanning software contrast regulation were dif-
ferent from those used in the training phase. We had 1554 characters in a plain
text from MS Windows Arial font at 300 dpi resolution in a 629K TIFF file.

text2 setWe had different scanner, printer and contrast regulation from those used
in the training phase. The character set consisted of 1508 characters in a plain
text from MS Windows Times font at 300 dpi resolution in a 612K TIFF file.

text3 setThe scanner and printer were different from those used at the training
phase, but the contrast regulation was the same as in the training phase. We had
1585 characters in a plain text from MS Windows Arial font at 300 dpi resolution
in a 616K file.

barc setThe scanner, printer and scanning software contrast regulation were those
used in the training phase. We had 320 characters (32 classes with 10 prototypes
each) from MS Windows Bold Arc font at 300 dpi resolution in a 731K file.

barial set The same as with barc set with characters from MS Windows Bold Arial
font.

btimes setThe same as with barc set with characters from MS Windows Bold
Times font.

4.4. Types of Experiments Conducted

The following architectures combining different features and classifiers were implemented:

1. A minimum distance classifier was trained using either the 41 convolutional weighted
mask featuresxk;pl;i or the 256 IBR critical points as inputs. Various distance met-
rics were used and the best recognition accuracy results, presented in Table 3, were
achieved using a fourth power metric

D(k) =

"X
i

(xk;pl;i �mk
l;i)

4

#1=4

2. A fully connected feedforward network with two layers of weights and a 41-40-32
architecture was trained using on-line BP as the training algorithm with a learning rate
of 0.4 and a momentum acceleration factor of 0.5. For each character belonging to a
categoryk, the convolutional featuresxk;pl;i were used as the network input. The desired
output of all output nodes was 0, except for thek-th node, whose desired output was
1. A set of characters distinct from the training and test sets was used as a validation
set: The final weights used for testing were those for which recognition accuracy in the
validation set during training had reached its maximum value. Second, a similar MLP
with 256-50-32 architecture (with respect to the other parameters being precisely the
same) has been involved in the case of IBR Critical Points-based feature extraction.
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MDC-Conv MDC-IBR On-line BP On-line BP ALECO-2 ALECO-2
(Conv.) (IBR) (Conv.) (IBR)

text1 97.94 98.13 99.16 99.09 99.74 99.94
text2 93.77 95.89 98.67 99.07 99.07 99.64
text3 99.37 99.56 99.56 99.75 99.87 99.95
barc 85.31 85.94 92.18 95.31 96.69 99.74

barial 91.25 92.50 97.18 96.88 96.98 98.23
btimes 86.88 86.31 93.75 95.31 97.81 98.45

TABLE 3. Classification accuracy results for the characters in our six different test
sets using various feature-classifier combinations. Each column corresponds to a de-
scribed experiment.

3. Two MLPs with the same architecture, inputs and desired outputs as in case 2 were
trained using ALECO-2 as the learning algorithm. The parameter values�P = 0:5 and
� = 0:5 were used.

4.5. Results

Our results regarding the recognition accuracy of different feature extraction-classification
combinations are summarized in Table 3.

¿From these results the following conclusions can be drawn:

� The use of IBR-based features helps improve recognition accuracy results. This is
evident in nearly all the results obtained using either MDC or MLP-based classifiers.

� ALECO-2 emerges as a powerful neural network training algorithm for large-scale
OCR tasks. In our experiments, the excellent speed and scalability properties of
ALECO-2 were confirmed: Convergence of the training procedure for experiment
no. 5 in a network with 2992 weights was achieved in just 150 epochs (using Fahlman’s
0.4-0.6 criterion [44]). Moreover, our results show attractive generalization ability
properties: Compared with on-line BP, ALECO-2 achieved better recognition rates,
including substantial improvements in the barc and btimes test sets. The good general-
ization ability of ALECO-2 can probably be attributed to the fact that the cost function
is changed monotonically and gradually [31], without the abrupt jumps sometimes
involved in learning algorithms which incorporate heuristics in their formulation (in-
cluding on-line BP). Note that, in the same spirit of constrained learning, it is possible
to augment ALECO-2 with weight elimination techniques [34], which will hopefully
further improve its generalization ability without adverse effect on its learning speed.

5. Conclusions and a discussion of the future trends

In this chapter two main methodologies have been presented and evaluated for the design of
fast and efficient pattern recognition systems. Namely, the IBR approach for image repre-
sentation as well as a constrained optimization based framework for training MLP pattern
classifiers.

First, the image block representation idea and the associated algorithm were presented.
Owing to the nature of the digital image, only rectangular areas with the same level are
present. IBR uses these rectangular similarities and offers advantages in image handling
and computational cost. IBR also provides a perception about rectangular image regions
larger than a pixel. 2-D moments is a classical image analysis tool, and the use of block
represented binary images dramatically decreases the computation effort. The complexity
of the algorithm for computation of moments in block represented images is independent of
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image size. Using the IBR scheme for computation of moments a rate of 35 to 50 frames/sec
with 512x512 images is achieved. The real-time moments computation in block represented
binary images is useful in motion detection, moving object recognition, target identification
and tracking, and robot vision applications. Other image processing and analysis tasks can
be also performed on block represented images, but this is a topic for future research. The
extension of the proposed method to gray level images is straightforward. Each block is
represented by five integers: the coordinates of the upper left and lower right corners and its
gray level value. For the moments computation, it suffices to calculate the moments of the
corresponding binary block and to multiply them by the gray level value of the block, since
all pixels of the block have the same gray level value.

Second, the constrained optimization-based training of MLPs has been illustrated to be a
fruitful idea for designing fast and efficient pattern classifiers in terms of convergence, scal-
ability properties and generalization performance. It is based on the incorporation of knowl-
edge in the learning process of MLPs, in terms of additional functions to be optimized during
the learning process, but in a decomposing manner. More successful forms of knowledge
functions as well as new ways for incorporating knowledge in the MLP training procedure
are under investigation by the authors, in order to facilitate the design of fast and effective
pattern recognition systems.
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