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ABSTRACT. We introduce the theory of frames and develop wavelet theory as a natu-
ral extension of the Classical Sampling Theorem. This material serves as background
for our applications to periodicity detection, noise reduction, and multidimensional
irregular sampling.

1. Introduction

As a part of the mathematical base for Signal Processing for Multimedia, I shall present
the fundamentals of wavelet theory. This material is highly developed. The references [26],
[14], [11], [4], [24], [31], [29], [17] systematically develop and extend the original work
on wavelets by Coifman, Daubechies, Feichtinger, Frazier, Gr¨ochenig, Grossman, Jawerth,
Mallat, Meyer, Morlet, et al., and integrate all of the important, antecedent, and sometimes
equivalent notions from speech and image processing and harmonic analysis.

In the brief exposition that follows, I have chosen a path to wavelets beginning with the
Classical Sampling Theorem. This approach is fully developed in the forthcoming second
edition of [2], and is in the spirit of the general multimedia signal processing theme.

Because of space constraints, I have not included the following material that I was able
to give in my oral presentation: Gabor theory, the theory of frames, and my applications
to periodicity detection, noise reduction, and multidimensional irregular sampling, e.g., [4],
Chapters 3 and 7, [6], [7], and [8].

I also want to mention the lifting scheme which is largely due to Wim Sweldens, e.g., [30],
[15]. This approach, which is sometimes referred to as second generation wavelet theory,
allows the implementation of the multirate system component of wavelet theory to be applied
in cases where translation invariance and the Fourier transform are not available. These cases
include wavelet theory on finite blocks, useful in image processing, and on spheres.

Our notation is standard, and our approach to wavelet theory is from the point of view of
harmonic analysis as found in [2].

In particular, theFourier transformof a functionf : Rd ! C is the functionbf : bRd ! C

defined as

8
 2 bRd ; bf(
) = Z f(t)e�2�it�
 dt;

where “
R

” designates integration over Euclidean spaceRd and wherebRd is Rd considered as
the spectral or frequency domain of temporal or spatial functions defined onRd . The support
of a functionf is designated bysupp f ; �(m;n) is 0 if m 6= n and1 if m = n; 1X is the
characteristic function of the setX; ande
(t) = e�2�it�
 .
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1. Gabor and Wavelet Systems

DEFINITION 1.1 (Gabor and Wavelet Systems).

a. Let g 2 L2(R) and leta; b > 0. TheGaboror Weyl-Heisenberg system(of coherent
states) is the sequence

fgm;n : (m;n) 2 Z� Zg
where

gm;n(t) = e2�itmbg(t� na) = emb(t) �nag(t):

Clearly,

(gm;n)
^ (
) = e2�inamb e�2�ina
bg(
 �mb) = �mb(e�nabg)(
):

b. Let  2 L2(R). Thewaveletor affine systemcorresponding to is the sequence
f m;n : (m;n) 2 Z� Zg, where

 m;n(t) = 2m=2 (2mt� n) :
Clearly,

( m;n)
^ (
) = 2�m=2e�2�in(
=2

m) b (
=2m) = 2�m=2 e�n b (
=2m):
DEFINITION 1.2 (Bases and Frames).LetH be a Hilbert space and letfxn : n 2 Zg �

H be a sequence inH.

a. The sequencefxng is a basisor Schauder basisfor H if eachx 2 H has a unique
decomposition

x =
X
n2Z

cn(x) xn inH:

A basisfxng for H is anorthonormal basis(ONB) forH if it is orthonormal, that is, if

8m;n 2 Z; hxm; xni = �(m;n):

b. A basisfxng for H is anunconditional basisfor H if
9C > 0 such that8F � Z; wherecardF < 1, and8bn; cn 2 C , where
n 2 F andjbnj < jcnj,




X

n2F
bnxn






 � C






X
n2F

cnxn






 :
An unconditional basis is abounded unconditional basisfor H if

9A;B > 0 such that 8n 2 Z; A � kxnk � B:

c. The sequencefxng is a framefor H if there areA;B > 0 such that

8x 2 H; A kxk2 �
X
n2Z
jhx; xnij2 � B kxk2 :

The constantsA andB are frame bounds, and a frame istight if A = B. A frame is
anexact frameif it is no longer a frame whenever any of its elements is removed.

Theframe operatorof a given framefxng for H is the mappingS : H ! H
defined by

Sx =
X
n2Z
hx; xni xn:
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d. If fxng is a frame forH andS is the corresponding frame operator, then it can be
shown thatS is a bijective continuous linear map, and, hence, by the Open Mapping
Theorem,S�1 is also continuous, e.g., [4], Theorem 3.2.

Assuming this result, we can deduce thatfS�1xng is a frame forH with frame
boundsB�1 andA�1; and that

8x 2 H; x =
X
n2Z
hx; S�1xni xn =

X
n2Z
hx; xniS�1xn:(1.1)

Using the continuity ofS andS�1, the verification of (1.1) is elementary. In fact,

x = SS�1x =
X
n2Z
hS�1x; xni xn

and

x = S�1Sx = S�1
 X

n2Z
hx; xni xn

!
=
X
n2Z
hx;xniS�1xn:

e. The notions of bounded unconditional bases and exact frames are equivalent, e.g.,
[32], [1], Theorem 17, [4], Thereom 3.7.

2. Gabor’s and Morlet’s Ideas

EXAMPLE 2.1 (Gabor’s idea).Gabor’s goal was to make the “best utilization of the in-
formation area” [18]. In order to formulate this idea we recall that the Classical Uncertainty
Principle inequality is

(UP) kfk2L2(R) � 4� k(t� t0)f(t)kL2(R) k(
 � 
0) bf(
)kL2(bR):
For s > 0 and(t0; 
0) 2 R � bR define the modulated and translated Gaussian,

g(t) =

r
2s

�
e�s(t�t0)

2

e2�it
0 :

It is routine to check thatg provides equality in (UP).
Setting

�2ts = 4� k(t� t0)g(t)k2L2(R)
and

�2
s = 4� k(
 � 
0)bg(
)k2L2(bR) ;
we compute�2ts = �=s and�2
s = s=�, so that�2ts �2
s = 1.

If f 2 L2(R) andkfkL2(R) = 1, then theexpected valuesassociated withjf j2 and j bf j2
are

�t =

Z
tjf(t)j2 dt and �
 =

Z

j bf(
)j2 d
;

and thevariancesassociated withjf j2 andj bf j2 are

�2t =

Z
(t� �t)2jf(t)j2 dt and �2
 =

Z
(
 � �
)2j bf(
)j2 d
:

If jf j2 is a probability density function of a random variableX, then�2t is the usual notion
of the variance�2X ofX, e.g., [2], Section 2.8.

Because of (UP) and the equality�2ts�2
s = 1 for g, Gabor argued that decomposing the
time-frequency plane by means of non-overlapping rectangles whose sides each have length
and height�2ts and �2
s, respectively, would lead to signal decompositions with optimal
time and frequency localization.
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Gabor’s decomposition is of the form

f(t) =
X
m;n2Z

cm;n

r
2s

�
e�s(t�n�

2ts)2 e2�im�2
s ;

cf., [18] and [3] for the original decomposition and recent formulations, respectively.

EXAMPLE 2.2 (Morlet’s idea).Jean Morlet is a geophysicist who introduced wavelet
theory in the course of his analysis of seismic tracess [27], [28], [20], [21]. These traces
can be considered as the real part of finite energy signalsf for which bf is causal.

Morlet’s idea was to analyze the traces by a family of functions having a fixed shape, in
the sense that each element of the family should be a lattice translation and (dyadic) dilation
of one function . Thus, in the dyadic case, the elements m;n of the family are indexed by
pairs (m;n) of integers, and each m;n is defined as

 m;n(t) = 2m=2  (2mt� n)
as inDefinition 1.1b. The aforementioned analysis is the computation of the sequence

fhs;  m;nig
wheres and  are assumed to be elements ofL2(R), and hs;  m;ni =

R
s(t) m;n(t) dt.

The goal is to reconstruct the traces from the computable data setfhs;  m;nig. The point
of dealing withf m;ng is that the operations of dilation and translation preserve thesame
number of cycles for high, medium or low frequencies.

The sampled valueshs;  m;ni are analogous to the Fourier coefficients ofs, in that we
want to reconstructs in terms of them. There are, however, fundamental differences between
the wavelet systemf m;ng and Fourier analysis.

Before discussing these differences, and even before explicitly dealing with Morlet’s orig-
inal function , we want to make a remark about terminology. The termwaveletoften means
a function for which the familyf m;ng is an ONB forL2(R). On the other hand, Morlet’s
original work, which inspired so much of wavelet theory in the 1980s, was well–understood
by Morlet and other geophysicists at the time to be a redundant wavelet system. As reinforced
to us by Goupillaud [19], Morlet’s familyf m;ng could not be orthonormal or independent
in order to achieve the noise reduction required to solve the geophysical problems at hand.
In essence, Morlet’s wavelet systems were frames.

It should be pointed out that essentially equivalent “wavelet ideas” existed in the mathe-
matical and engineering literature prior to Morlet’s work, e.g., [22], [10], [12], [16], [9].

EXAMPLE 2.3 (Plots of Gabor and Morlet systems).In Figure 1, the functiong, for the
systemfgm;ng, is the Gaussian defined inExample 2.1. In Figure 2, the function for the
systemf m;ng is

 (t) = e��t
2
�
e2�it
0 � e��
20

�
:

These plots of the real parts of the Gabor and wavelet systems follow.

3. Sampling in terms of Wavelet and Gabor Systems

ThePaley-Wiener spacePW
 is defined asPW
 = ff 2 L2(R) : supp bf � [�
;
]g.
The following result is proved in [2], pages 256–257.

THEOREM 3.1 (Classical sampling theorem).LetT;
 > 0 satisfy the condition that0 <
2T
 � 1, and lets 2 PW1=(2T ) satisfy the condition thatbs = 1 on [�
;
] andbs 2 L1(bR).
Then

8f 2 PW
; f = T
X

f(nT )�nTs;(3.1)



J.J. Benedetto / Sampling Theory and Wavelets 23

−1 0 1
−1

−0.5

0

0.5

1
Gabor: m=1 and n=−1.

−1 0 1
−1

−0.5

0

0.5

1
Gabor: m=1 and n=0.

−1 0 1
−1

−0.5

0

0.5

1
Gabor: m=1 and n=1.

−1 0 1
−1

−0.5

0

0.5

1
Gabor: m=4 and n=−1.

−1 0 1
−1

−0.5

0

0.5

1
Gabor: m=4 and n=0.

−1 0 1
−1

−0.5

0

0.5

1
Gabor: m=4 and n=1.

−1 0 1
−1

−0.5

0

0.5

1
Gabor: m=7 and n=−1.

−1 0 1
−1

−0.5

0

0.5

1
Gabor: m=7 and n=0.

−1 0 1
−1

−0.5

0

0.5

1
Gabor: m=7 and n=1.

−1 0 1
−1

−0.5

0

0.5

1
Gabor: m=10 and n=−1.

−1 0 1
−1

−0.5

0

0.5

1
Gabor: m=10 and n=0.

−1 0 1
−1

−0.5

0

0.5

1
Gabor: m=10 and n=1.

FIGURE 1. Gabor system

where�nT s(t) = s(t � nT ), and where the convergence in (3.1) is inL2(R) norm and
uniformly inR. A possible sampling functions is the Dirichlet kernel

d2�
(t) =
sin 2�
t

�t
:

EXAMPLE 3.2 (The Shannon wavelet system).Let 
 > 0. To be compatible with stan-
dard wavelet notation, let

� = �(
) =
1p
2


d2�
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FIGURE 2. Morlet system

and let

 =  (
) =
1p
2


(d2�(2
) � d2�
):
 (
) is theShannon wavelet.

The following result is proved by periodizing
p
2
F (
) b (
=2m) and calculating its

Fourier series. This is the same method used to prove the Classical Sampling Theorem,
and, in fact,Theorem 3.1is a special case ofTheorem 3.3for f 2 PW
.

THEOREM 3.3 (A Shannon wavelet decomposition using Fourier series).Letf 2 L2(R)
have Fourier transformF , and let
 > 0. For the function� = 1p

2

d2�
 and the Shannon
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wavelet = 1p
2


(d2�(2
) � d2�
), there is the decomposition

f =
p
2
f � �+

1X
m=0

X
n

dm;n m;n=(4
)(3.2)

=
X
n

f � �( n
2


)�n=(2
)�+
1X

m=0

X
n

dm;n m;n=(4
)

=
X
m

X
n

dm;n m;n=(4
);

where

dm;n =
1p

2
2(m=2)+1

Z 2m+1


�2m+1


F (
)
�
1[�2m+1
;�2m
)(
) + 1[2m
;2m+1
)(
)

�
e2�in
=(2

m+2
)d


and where convergence in (3.2) is inL2(R) norm.

With minor modifications we can then prove the following result.

THEOREM 3.4 (Shannon wavelet systems: ONBs and tight frames).Let =  (
) be the
Shannon wavelet.

a.
�
 m;n=(2
)

	
is a wavelet ONB forL2(R).

b.
�
 m;n=(4
)

	
is a tight frame forL2(R) with frame constantsA = B = 2.

Gabor systems also provide a generalization of the Classical Sampling Theorem, as illus-
trated by the following result [5].

THEOREM 3.5 (Gabor decomposition).LetT ,
 > 0 be constants for which0 < 2T
 �
1, and letg 2 PW1=(2T ) have the properties thatbg 2 L1(bR),

bg = 1 on [�
;
];

and, in case2T
 < 1, bg is continuous and

jbgj > 0 on (� 1

2T
;�
] [ [
;

1

2T
):

Set

G(
) =
X
jbg(
 �mb)j2 and s(t) = (

bg
G
)_(t);

where
 + 1
2T
� b < 1

T
in case2T
 < 1 and
 + 1

2T
= b if 2T
 = 1. Then

9A;B > 0 such that A � G(
) � B a.e.,

s 2 PW1=(2T ), bs 2 L1(bR), bs = 1 on [�
;
],

8f 2 L2(R); f = T
X
h bf; enT �mbbgi��nT (embs) in L2(R);

and

8f 2 PW
; f = T
X

f(nT )�nT s in L2(R):

The generalizations,Theorems 3.3–3.5, of Theorem 3.1provide a mathematical explana-
tion of aliasing, e.g., [1], [4], Chapter 7, and [2], Sections 3.10.12.
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4. Multiresolution Analysis Wavelet ONBs

DEFINITION 4.1 (Orthonormal wavelets).Let  2 L2(R). For eachm;n 2 Z,  m;n is
the function defined by m;n(t) = 2m=2 (2mt�n). The function is anorthonormal wavelet
if f m;ng is an ONB forL2(R).

THEOREM 4.2 (Daubechies 1987).Let r � 1. There are compactly supportedr-times
continuously differentiable orthonormal wavelets.

EXAMPLE 4.3 (Deblurring and multiresolution).Let be an orthonormal wavelet. The
concept ofmultiresolutionis motivated and understood by the following nomenclature and
intuition. Letf 2 L2(R) and supposesupp  � [�1=2; 1=2]. Thensupp  m;n � Im;n,
where

Im;n =

�
n

2m
� 1

2m+1
;
n

2m
+

1

2m+1

�
:

The length ofIm;n is jIm;nj = 2�m. Let

fM =
X
m�M

X
n

hf;  m;ni m;n:

Then,fM+1 = fM +
P

nhf;  M+1;ni M+1;n can be thought of asdeblurringfM by adding to
fM the behavior off on intervals of length2�(M+1).

DEFINITION 4.4 (Multiresolution analysis (MRA)).An MRA ofL2(R) is a sequence

fVj : j 2 Zg
of closed subspaces ofL2(R) satisfying the following properties:

a. 8j 2 Z, Vj � Vj+1;
b. f 2 V0 if and only if�kf 2 V0 for all k 2 Z;
c. f(t) 2 Vj if and only iff(2t) 2 Vj+1;
d.
T
Vj = f0g and

S
Vj = L2(R);

e. 9� 2 V0 such thatf�k�g is an ONB forV0.

The function� is ascaling functionfor thefVjg.
The proof of the following fundamental theorem can be found in [25], [26], [14]. As

in Section 3, there is an interplay between Fourier series and Fourier transforms. In fact,
1-periodic Fourier seriesH0, defined by the property

jH0(
)j2 + jH0(
 +
1

2
)j2 = 2 a.e.;

are essential. These series arequadrature mirror filters(QMFs).

THEOREM 4.5. Let fVj : j 2 Zg be an MRA ofL2(R) with scaling function�. There is
a constructible orthonormal wavelet , depending on�. In fact, a choice for the function 
is

 (t) =
p
2
X
n

h1[n]�(2t� n);

where convergence is inL2(R), where

8n 2 Z; h1[n] = (�1)nh0[�n + 1];

and wherefh0[n]g is the sequence of Fourier coefficients of the QMFH0 2 L1(T), which in
turn is a solution of the frequency scaling equation

p
2b�(2
) = H0(
)b�(
) in L2(R):

H1 is the Fourier series with Fourier coefficientsfh1[n]g.
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REMARK 4.6. a.Let fVjg be an MRA and letWj be the orthogonal complement of
Vj in Vj+1. In light of Definition 4.4andTheorem 4.5, we have

L2(R) =
M
j2Z

Wj:(4.1)

The wavelet of Theorem 4.5is an element ofW0 andf�n g is an ONB forW0. The
inclusions,Vj � Vj+1, and the direct sum of (4.1) are illustrated in Figure 3.

b. Let� = 1[0;1), and letV0 = span f�n�g. If we setVj = ff 2 L2(R) : 2j=2f(2jt) 2 V0g
then we obtain theHaar MRAofL2(R); and the function of Theorem 4.5is theHaar
orthonormal wavelet. Similarly, ifp 2 [1;1) and

V0 = f
X

an�n� : fang 2 `p(Z)g;
then we obtain the Haar MRA ofLp(R).

EXAMPLE 4.7 (MRA and change of basis).Let fVjg be an MRA ofL2(R) with scaling
function� 2 V0 and orthonormal wavelet 2 W0, constructed as inTheorem 4.5. Thus,
f�n�g is an ONB forV0 andf�n g is an ONB forW0.

a. Besidesf�n�g, the sequence of functions

1p
2
�(
t

2
� n); 1p

2
 (
t

2
� n),(4.2)

wheren 2 Z, forms an ONB forV0.
To see this, first note that

8n 2 Z; 1p
2
�(
t

2
� n) 2 V�1:(4.3)

In fact, if f(t) = �(t � n), thenf 2 V0 so thatf( t
2
) 2 V�1 by definition of an MRA.

Thus, (4.3) is obtained sincef( t
2
) = �( t

2
� n) and sinceV�1 is a linear subspace of
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L2(R). Next, we can assert that

8n 2 Z; 1p
2
 (
t

2
� n) 2 W�1.(4.4)

In fact, if g(t) =  (t � n), theng 2 W0 so thatg( t
2
) 2 W�1. Thus (4.4) is obtained

sinceg( t
2
) =  ( t

2
� n) and sinceW�1 is a vector subspace ofL2(R). The orthonor-

mality of the functions in (4.2) is a consequence of the orthonormality off�n�g in V0,
the orthonormality off�n g in W0, and the fact thatV0 = V�1 �W�1. For example,Z

1p
2
�(
t

2
� n) 1p

2
�(
t

2
� q)dt =

Z
�(u� n)�(u� q)du = �(n; q):

Further, the fact that the functions in (4.2) form an ONB forV0 is a consequence of the
just proved orthonormality and the following calculations for arbitraryf 2 V0:

f = fV + fW , wherefV 2 V�1, fW 2 W�1;

fV (2t) 2 V0 so that

fV (2t) =
X
hfV (2u); �n�(u)i�n�(t) in L2(R),

and thus,

fV (t) =
X
h
p
2fV (2u); �n�(u)i 1p

2
�(
t

2
� n) 2 V�1:

and finallyfW (2t) 2 W0 so that

fW (2t) =
X
hfW (2u); �n (u)i�n (t) in L2(R);

and thus

fW (t) =
X
h
p
2fW (2u); �n (u)i 1p

2
 (
t

2
� n) 2 W�1:

b. The procedure of parta can be used to make other ONBs forV0. In fact, for any fixed
m 2 N we have the orthogonal complement direct sum

V0 = V�m �W�m �W�m+1 �W�m+2 � : : :�W�1;

and hence the sequence of functions

��m;n;  �m;n;  �m+1;n; � � � ;  �1;n,

wheren 2 Z, forms an ONB forV0.
This procedure can be generalized significantly by introducing the idea of wavelet-

packets.

5. Waveletpackets

Let fVjg be an MRA ofL2(R) with scaling function� 2 V0 and orthonormal wavelet
 2 W0 constructed as inTheorem 4.5. We have

�(t) =
X

h0[n]�1;n(t) 2 V1 in L2(R)

and
 (t) =

X
h1[n]�1;n(t) 2 V1 in L2(R):

Thus, b�(
) = 1p
2
b�(


2
)H0(




2
) and b (
) = 1p

2
b�(


2
)H1(




2
) in L2(bR):

The ONB splitting ofV0 for a given MRA, reflected by (4.2), can be effected at every
node in the dyadic tree ofFigure 4. (At this point we have only labeled the nodesV0, V�1,
W�1, V�2, W�2, V�3, W�3, � � � .) To see how this is done, we begin with the ONBf�n�g for
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V0, or, equivalently, the ONBfe�nb�g for bV0 � L2(bR). Then the nodes designatedV�1 and
W�1 can be characterized by the formulas written inFigure 5.

V�1 W�1

��1;n(t) =
1p
2
�( t

2
� n)$ e�2n(
)

p
2b�(2
);  �1;n(t) =

1p
2
 ( t

2
� n)$ e�2n(
)

p
2b (2
)

p
2b�(2
) = b�(
)H0(
)

p
2b (2
) = b�(
)H1(
)

Figure 5

In particular,
n
e�2n(
)

p
2b�(2
)o is an ONB forbV�1 and

n
e�2n(
)

p
2b (2
)o is an ONB

for cW�1. We obtain an ONB splitting ofV�1 by the sequence

f( 1p
2
)2�(

t

22
� n); ( 1p

2
)2 (

t

22
� n) : n 2 Zg,(5.1)

noting that

f( 1p
2
)2�(

t

22
� n)g � V�2 and f( 1p

2
)2 (

t

22
� n)g � W�2:(5.2)

In the case of (5.1) and (5.2), the analogue ofFigure 5, for the nodes designatedV�2 andW�2
coming from the splitting ofV�1, is given by the formulas written inFigure 6.

V�2 W�2

��2;n(t) = ( 1p
2
)2�( t

4
� n)  �2;n(t) = ( 1p

2
)2 ( t

4
� n)

 !  !
e�4n(
)(

p
2)2b�(4
); e�4n(
)(

p
2)2 b (4
);

(
p
2)2b�(4
) = b�(
)H0(
)H0(2
) (

p
2)2 b (4
) = b�(
)H0(
)H1(2
)

Figure 6

In particular,fe�4n(
)(
p
2)2b�(4
)g is an ONB forbV�2 andfe�4n(
)(

p
2)2 b (4
)g is an ONB

for cW�2. Clearly, the last formulas inFigure 6are consequences of equation (5.1), e.g.,

(
p
2)2b�(4
) = p2b�(2
)H0(2
) = b�(
)H0(
)H0(2
):



30 J.J. Benedetto / Sampling Theory and Wavelets

At this point it is reasonable to ask if there is a natural splitting ofW�1 in Figure 4 to
complete the remaining two nodes which are on the same level asV�2 andW�2.

The answer is “yes” and the procedure results in new ONBs forV0. In order to describe
the procedure it is convenient to use the classical dyadic tree notation, e.g., [2], Remark 3.9.4.
Thus, at level0,X0

0 denotesV0; at level1,X1
0 andX1

1 denoteV�1 andW�1; at level2,X2
(0;0)

andX2
(0;1) denoteV�2 andW�2.

In the case of level1, the subscript0 of X1
0 corresponds to the subscript0 of H0 on the

left side ofFigure 5, and the subscript1 of X1
1 corresponds to the subscript1 of H1 on the

right side ofFigure 5.
In the case of level2, there are the four consecutive spacesX2

(0;0),X
2
(0;1),X

2
(1;0), andX2

(1;1).
The subscript(0; 0) of X2

(0;0) = V�2 corresponds to the two subscripts0 and0 of H0(
) and
H0(2
) on the left side ofFigure 6. The subscript(0; 1) of X2

(0;1) = W�2 corresponds to the
two subscripts0 and1 of H0(
) andH1(2
) on the right side ofFigure 6.

Because of this pattern we associate the functionb�(
)H1(
)H0(2
) with X2
(1;0) and the

function b�(
)H1(
)H1(2
) with X2
(1;1). In this way, level2 of the tree inFigure 4 can be

completed. In fact, we define the functions�1;0 and�1;1 by the formulas

(
p
2)2b�1;0(22
) = b�(
)H1(
)H0(2
)

and
(
p
2)2b�1;1(22
) = b�(
)H1(
)H1(2
):

ThenX2
(1;0) is defined as

X2
(1;0) = span f 1

(
p
2)2

�1;0(
t

22
� n) : n 2 Zg in L2(R)

andX2
(1;1) is defined as

X2
(1;1) = span f 1

(
p
2)2

�1;1(
t

22
� n) : n 2 Zg in L2(R):

It is easy to prove thatf 1
(
p
2)2
�1;0(

t
22
� n)g is an ONB forX2

(1;0), thatf 1
(
p
2)2
�1;1(

t
22
� n)g

is an ONB forX2
(1;1), and that

W�1 = X1
1 = X2

(1;0) �X2
(1;1);

an orthogonal complement direct sum.
The previous details give rise to the following general procedure for a given MRA. We

form the treefXr
m : r � 1g, wherem 2 f0; 1; 2; 3; � � � ; 2r � 1g and whereX0

0 = V0. Each
elementXr

m of the tree is a closed linear subspace ofV0. Further,Xr
m, r � 1, is determined

by the function

2r=2b��1;��� ;�r(2r
) = b�(
)H�1(
)H�2(2
)H�3(2
2
) : : :H�r(2

r�1
);(5.3)

m =
Pr

j=1 �j2
j�1 and�j 2 f0; 1g, in the sense that

Xr
m = span f2�r=2��1;��� ;�r(

t

2r
� n) : n 2 Zg;(5.4)

f2�r=2��1;��� ;�r(
t

2r
� n) : n 2 Zg is an ONB forXr

m,(5.5)

and

V0 =
2r�1M
m=0

Xr
m;(5.6)
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an orthogonal complement direct sum.
TheWavelet Packet Algorithmis the treefXr

mg of subspaces ofV0 defined by (5.3), (5.4),
(5.5), and (5.6). We have written the orthogonal complement direct sum in (5.6) in terms of
the natural ordering0; 1; � � � ; 2r � 1. In fact, at levelr, the spacesXr

m are ordered, left to
right on the tree, by bit reversal ordering.

6. Multidimensional Orthonormal Wavelets

EXAMPLE 6.1 (Rectilinear wavelet decompositions).Let  be an orthonormal wavelet
for L2(R). For each(j; k) 2 Z2 and(m;n) 2Z2, define the tensor product

 j;k 
  m;n(x1; x2) =  j;k(x1) m;n(x2):

Thenf j;k 
  m;n : j; k;m; n 2 Zg is an ONB forL2(R2). For every ordered 4-tuple
(j; k;m; n; ) 2 Z4, we define

( 
  )j;k;m;n(x1; x2) =  j;k 
  m;n(x1; x2):

As such we shall say that 
  is a rectilinear orthonormal waveletfor L2(R2). Notice
that ( 
  )j;k;m;n providesseparatedilation and translation in thex1 and x2 variables.
Consequently, the wavelet decomposition of arbitraryf 2 L2(R2) involves rectangles of all
shapes, e.g., very long and skinny ones, in order to achieve reconstruction. We refer to this
approach as therectilinear tensor product wavelet decomposition.

EXAMPLE 6.2 (MRA wavelet decompositions).LetfVjg be an MRA ofL2(R) with scal-
ing function� and orthonormal wavelet constructed fromTheorem 4.5.Define the tensor
product

�
 �(x1; x2) = �(x1)�(x2);

and letV 2
0 be the set of functionsf : R2 ! C having the form

f(x1; x2) =
X

n1;n22Z
cn1;n2�
 �(x1 � n1; x2 � n2);

wherec = fcn1;n2g 2 `2(Z2). Then,V 2
0 = span ff 
 g(x1; x2) : f; g 2 V0g = V0
̂V0, the

projective tensor product. Next, set

V 2
j = fg(x1; x2) = f(2jx1; 2

jx2) : f 2 V 2
0 g:

It can now be proved thatfV 2
j : j 2 Zg is an MRA ofL2(R2) with scaling function�
�.

The orthogonal complement ofV 2
0 in V 2

1 is denoted byW 2
0 .

Clearly,

V 2
j+1 = Vj+1
̂Vj+1 = (Vj �Wj)
̂(Vj �Wj)

= Vj
̂Vj � [(Wj
̂Vj)� (Vj
̂Wj)� (Wj
̂Wj)]:

Thus, three wavelets, viz.,
�
  (x1; x2) = �(x1) (x2);

 
 �(x1; x2) =  (x1)�(x2);

 
  (x1; x2) =  (x1) (x2);

are required to provide an MRA wavelet decomposition ofL2(R2).

In light of this background, the following is an amazing result, e.g., [13].

THEOREM 6.3. There existsK � R̂d such that ̂ = 1K defines an orthonormal wavelet
for L2(Rd), i.e.,

f j;k(x) = 2dj=2 (2jx� k) : j 2 Z; k 2 Zdg
is an ONB forL2(Rd).
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It was elementary to construct wavelet ONBs forL2(Rd) of the form

 j1;k1 
 :::
  jd;kd;
where is an orthonormal wavelet forL2(R) and j1; :::; jd; k1; :::; kd 2 Z (Example 6.1).
Theorem 6.3is a fundamentally deeper result since the dilation depends only onj 2 Z.
Similarly, it is a deeper result than the MRA approach toRd (Example 6.2).
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