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ABSTRACT. We introduce the theory of frames and develop wavelet theory as a natu-
ral extension of the Classical Sampling Theorem. This material serves as background
for our applications to periodicity detection, noise reduction, and multidimensional
irregular sampling.

1. Introduction

As a part of the mathematical base for Signal Processing for Multimedia, | shall present
the fundamentals of wavelet theory. This material is highly developed. The references [26],
[14], [11], [4], [24], [31], [29], [17] systematically develop and extend the original work
on wavelets by Coifman, Daubechies, Feichtinger, FraziesckBariig, Grossman, Jawerth,
Mallat, Meyer, Morlet, et al., and integrate all of the important, antecedent, and sometimes
equivalent notions from speech and image processing and harmonic analysis.

In the brief exposition that follows, | have chosen a path to wavelets beginning with the
Classical Sampling Theorem. This approach is fully developed in the forthcoming second
edition of [2], and is in the spirit of the general multimedia signal processing theme.

Because of space constraints, | have not included the following material that | was able
to give in my oral presentation: Gabor theory, the theory of frames, and my applications
to periodicity detection, noise reduction, and multidimensional irregular sampling, e.g., [4],
Chapters 3 and 7, [6], [7], and [8].

| also want to mention the lifting scheme which is largely due to Wim Sweldens, e.g., [30],
[15]. This approach, which is sometimes referred to as second generation wavelet theory,
allows the implementation of the multirate system component of wavelet theory to be applied
in cases where translation invariance and the Fourier transform are not available. These cases
include wavelet theory on finite blocks, useful in image processing, and on spheres.

Our notation is standard, and our approach to wavelet theory is from the point of view of
harmonic analysis as found in [2].

In particular, theFourier transformof a functionf : R¢ — C is the functionf: Rf - C
defined as

well, fo)= [ fea,

where “[” designates integration over Euclidean sp&éeand whereR? is R? considered as
the spectral or frequency domain of temporal or spatial functions defin&d.chhe support
of a functionf is designated byupp f; 6(m,n) is 0 if m # n andl if m = n; 1y is the
characteristic function of the sat; ande, (t) = e 2™,
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1. Gabor and Wavelet Systems

DEFINITION 1.1 (Gabor and Wavelet Systems).

a. Letg € L*(R) and leta,b > 0. TheGaboror Weyl-Heisenberg systeffof coherent
states) is the sequence

{gmn = (m,n) € Z x L}
where
Imn(t) = e%itmbg(t —na) = epp(t) Thag(t).
Clearly,

2mwinamb e—27rina'y/\

(Gm)" (7) = € Gy — mb) = Tms(€-nad) (7).
b. Lety € L*(R). Thewaveletor affine systencorresponding ta) is the sequence
{Ymn : (m,n) € Z x Z}, where
Gma(t) = 2729 (27t — ).
Clearly,

(Ymn)" (7) = 2726 72mnOP2™) i (y f2m) = 272 e iy /2™).
DEFINITION 1.2 (Bases and Framesl)et H be a Hilbert space and leftz,, : n € Z} C
H be a sequence i,

a. The sequencéz, } is a basisor Schauder basifor H if eachz € H has a unique
decomposition

T = ch(x) x, inH.

nez
A basis{z, } for H is anorthonormal basi€ONB) for H if it is orthonormalthat is, if
Vm,n € Z, (T, xn) =0(m,n).

b. A basis{z,} for H is anunconditional basifor H if
3C > 0 such thatvF' C Z, wherecard F' < oo, andVb,,, ¢,, € C, where
n € Fand|b,| < |c,l,

Z b,z

ner

An unconditional basis is hounded unconditional badisr H if
4A,B >0 suchthat VneZ, A<|z.||<B.

c. The sequencér,, } is aframefor H if there areA, B > 0 such that

Vo€ H, Alal* <) [z, za)* < Bla||”.
nez
The constants! and B are frame boundsand a frame igightif A = B. A frame is
anexact framef it is no longer a frame whenever any of its elements is removed.
Theframe operatoof a given framgz,,} for H is the mappings : H — H
defined by

<C

E CnTn

nelr

Sz = Z(x,xn>xn

nez
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d. If {z,} is a frame forH and S is the corresponding frame operator, then it can be
shown thatS is a bijective continuous linear map, and, hence, by the Open Mapping
Theorem,S—! is also continuous, e.g., [4], Theorem 3.2.

Assuming this result, we can deduce théit 'z, } is a frame forH with frame
boundsB ! andA~!, and that

(1.2) Vee H x= Z(x, Sty x, = Z(x,xn) S ta,.
nez nez
Using the continuity of and S—!, the verification of (1.1) is elementary. In fact,
r=288"1r = Z(S’lx,xn) T,
nel
and

r=S51'Sr=9" (Z(m, Tp) xn> = Z(x:vn) S ta,.

nel nel
e. The notions of bounded unconditional bases and exact frames are equivalent, e.g.,
[32], [1], Theorem 17, [4], Thereom 3.7.

2. Gabor’'s and Morlet’'s Ideas

ExXAmMPLE 2.1 (Gabor's idea).Gabor’s goal was to make the “best utilization of the in-
formation area” [18]. In order to formulate this idea we recall that the Classical Uncertainty
Principle inequality is

(UP) 11720y < 4 18 = t0)f ()l 2y 107 = 20 N2y

For s > 0 and(to, %) € R x R define the modulated and translated Gaussian,

g(t) — ./ éefs(tfto)2 627rit'yo )
T

It is routine to check tha¢ provides equality in (UP).

Setting

oty = 4 ||(t = t0)g (1) |72
and
0”7 =47 [|(v = )7V I22c) »

we computer?t, = /s ando?~y, = s/, so thato?t, oy, = 1.

If f € L*(R) and||f]| ;> = 1, then theexpected valueassociated withf|* and | f|*
are

t= [drwra and 3= [vf)Py

and thevariancesassociated withf| and| f|? are

ot = / (t— D2 ()P dt and oy = / (v = D F )P do.

If | f|? is a probability density function of a random variablg thens?t is the usual notion
of the variancer3. of X, e.g., [2], Section 2.8.

Because of (UP) and the equalityt, o2+, = 1 for g, Gabor argued that decomposing the
time-frequency plane by means of non-overlapping rectangles whose sides each have length
and heighto?t, and o2~,, respectively, would lead to signal decompositions with optimal
time and frequency localization.
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Gabor’s decomposition is of the form

s(t— naztS 2 27rzma 'ys
Cm,n

m,n€z
cf., [18] and [3] for the original decomposition and recent formulations, respectively.

EXAMPLE 2.2 (Morlet's idea).Jean Morlet is a geophysicist who introduced wavelet
theory in the course of his analysis of seismic trae¢®7], [28], [20], [21]. These traces
can be considered as the real part of finite energy sigridts Whichfis causal.

Morlet's idea was to analyze the tracdby a family of functions having a fixed shape, in
the sense that each element of the family should be a lattice translation and (dyadic) dilation
of one function). Thus, in the dyadic case, the elements, of the family are indexed by
pairs (m,n) of integers, and each,, , is defined as

o (1) = 27129 (2™t — )

as inDefinition 1.1b The aforementioned analysis is the computation of the sequence

{(s, ¥mn)}

where s and ¢ are assumed to be elementsIG{R), and (s, ¥ynn) = [ s(t)mn(t)dt
The goal is to reconstruct the tragefrom the computable data s¢ls, Ymn)}. The p0|nt
of dealing with{v,,} is that the operations of dilation and translation preserve shene
number of cycles for high, medium or low frequencies.

The sampled values, v, ,,) are analogous to the Fourier coefficients ©fin that we
want to reconstruct in terms of them. There are, however, fundamental differences between
the wavelet systetn),, , } and Fourier analysis.

Before discussing these differences, and even before explicitly dealing with Morlet’s orig-
inal functions, we want to make a remark about terminology. The teraweletoften means
a functiony for which the family{¢, , } is an ONB forL?(R). On the other hand, Morlet’s
original work, which inspired so much of wavelet theory in the 1980s, was well-understood
by Morlet and other geophysicists at the time to be a redundant wavelet system. As reinforced
to us by Goupillaud [19], Morlet’s family{«,, , } could not be orthonormal or independent
in order to achieve the noise reduction required to solve the geophysical problems at hand.
In essence, Morlet’s wavelet systems were frames.

It should be pointed out that essentially equivalent “wavelet ideas” existed in the mathe-
matical and engineering literature prior to Morlet’s work, e.qg., [22], [10], [12], [16], [9].

ExampLE 2.3 (Plots of Gabor and Morlet systemdh Figure 1, the functiong, for the
system{g,,... }, is the Gaussian defined Example 2.1 In Figure 2 the functiony for the

system{¢, , } is
Y(t) = e (et — 5 )

These plots of the real parts of the Gabor and wavelet systems follow.

3. Sampling in terms of Wavelet and Gabor Systems

The Paley-Wiener spac€Wy, is defined a®W, = {f € L*(R) : supp f C [—Q, Q]}.
The following result is proved in [2], pages 256-257.

THEOREM 3.1 (Classical sampling theoremlet7’, Q2 > 0 satisfy the condition that <
2TQ < 1, and lets € PW 1) satisfy the condition that = 1 on |-, Q] ands € L>*(R).
Then

(3.1) VfePWq, f=T> f(nT)murs,
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Gabor: m=1 and n=-1. Gabor: m=1 and n=0. Gabor: m=1 and n=1.

Gabor: m=4 and n=-1. Gabor: m=4 and n=0. Gabor: m=4 and n=1.
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1 -
-1 0 1 -1 0 1
Gabor: m=7 and n=-1. Gabor: m=7 and n=0. Gabor: m=7 and n=1.
1 - 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-1 0 1 -1 0 1
Gabor: m=10 and n=-1. Gabor: m=10 and n=0. Gabor: m=10 and n=1.

FIGURE 1. Gabor system

wherer,rs(t) = s(t — nT), and where the convergence in (3.1) isfiA(R) norm and
uniformly inRR. A possible sampling functionis the Dirichlet kernel

sin 27t
Proll) =

EXAMPLE 3.2 (The Shannon wavelet systentlet 2 > 0. To be compatible with stan-
dard wavelet notation, let
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Re(Morlet), m=-2 and n=-1. Re(Morlet), m=-2 and n=0. Re(Morlet), m=-2 and n=1.
0.1 0.6 0.1
0 0.4 0
0.2
-0.1 -0.1
0
-0.2 _02 -0.2
-0.3 -0.4 -0.3
-2 0 2 -2 0 2 -2 0 2
Re(Morlet), m=0 and n=-1. Re(Morlet), m=0 and n=0. Re(Morlet), m=0 and n=1.
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
-1 -1 -1
-2 0 2 -2 0 2 -2 0 2
Re(Morlet), m=2 and n=-1. Re(Morlet), m=2 and n=0. Re(Morlet), m=2 and n=1.
2 2 2
1 1 1
0 0 0
-1 -1 -1
-2 -2 -2
-2 0 2 -2 0 2 -2 0 2
Re(Morlet), m=4 and n=-1. Re(Morlet), m=4 and n=0. Re(Morlet), m=4 and n=1.
4 4 4
2 2 2
0 ‘N‘ 0 0 Awl
-2 -2 -2
-4 -4 -4
-2 0 2 -2 0 2 -2 0 2

FIGURE 2. Morlet system

and let
1

w = w(Q) = E(d%(m) - d2m)-

V(o) is theShannon wavelet

The following result is proved by periodizing2QF (~ 7/2’”) and calculating its
Fourier series. This is the same method used to prove the Classical Sampling Theorem,
and, in fact,Theorem 3.1s a special case dtheorem 3.3or f € PW,.

THEOREM 3.3 (A Shannon wavelet decomposition using Fourier series) f € L?(R)
have Fourier transfornF’, and letQ2 > 0. For the functionp = md%Q and the Shannon
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wavelet)) = = (dar(an) — d2re), there is the decomposition

(3.2) o= V20 56+ ) D dmnthmanyan)

m=0 n

n m=0 n
= Z Z dm,nwm,n/(élﬂ);

where

1 2mtiQ -
i = T | oo FO) (s (0) 4 Tamamenny (1)) €70/t
—om+1

and where convergence in (3.2) isfiA(R) norm.
With minor modifications we can then prove the following result.

THEOREM 3.4 (Shannon wavelet systems: ONBs and tight frames}z) = 1)) be the
Shannon wavelet.

a. {tmn/0) } is awavelet ONB fol%(R).
b. {tmn/0)} is atight frame forL?(R) with frame constantst = B = 2.

Gabor systems also provide a generalization of the Classical Sampling Theorem, as illus-
trated by the following result [5].

THEOREM 3.5 (Gabor decomposition).et7’, 2 > 0 be constants for which < 27 <

~

1, and letg € PW 1) have the properties thate L>(R),
g=1 on [-Q,Q],
and, in caseT) < 1, g is continuous and

1
g >0 on (——,—
[ (—57

Set
G(7) =3 Gy —mb) and s(t) = (£)" (1),
whereQ + ;& <b < Lincase2TQ < 1andQ + ;= = bif 2TQ = 1. Then
JA,B >0 suchthat A <G(y) < B ae,

~

S € PWI/(QT), s€ LOO(R), s=1on [—Q,Q],

Vi€ LAR), f=T ([ exrTmd)mur(ems) in L(R),
and
VfePWo, f=T> f(nD)rrs in L*(R).

The generalizationg,heorems 3.3-3,%f Theorem 3.Drovide a mathematical explana-
tion of aliasing, e.g., [1], [4], Chapter 7, and [2], Sections 3.10.12.
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4. Multiresolution Analysis Wavelet ONBs

DEFINITION 4.1 (Orthonormal wavelets).et ) € L*(R). For eachm,n € Z, ¢y, , is
the function defined by, , (t) = 2™/%(2™t —n). The function) is anorthonormal wavelet
if {¢m.} is an ONB forL?(R).

THEOREM 4.2 (Daubechies 1987).etr > 1. There are compactly supporteetimes
continuously differentiable orthonormal wavelets.

ExXAMPLE 4.3 (Deblurring and multiresolution).et ¢» be an orthonormal wavelet. The
concept ofmultiresolutionis motivated and understood by the following nomenclature and
intuition. Letf € L?*(R) and supposeupp ¢ C [—1/2,1/2]. Thensupp Ymn C Lnn,

where a
n 1 n 1 }

fmn = {Q_m_W’z_erW |
The length of,, ,, iS |1, »| = 27™. Let
fM - Z Z(fa wm,n>wm,n-
m<M n
Then,far = far + D0, (f, Ya+1.0) ¥+, €an be thought of adeblurring f5, by adding to
fu the behavior off on intervals of lengti2—(M+1),

DEFINITION 4.4 (Multiresolution analysis (MRA)) An MRA ofL%(R) is a sequence

{V;:j€eZ}
of closed subspaces 6f (R) satisfying the following properties:

a.VjeZ,V; TV,

b. f e Vyifand onlyifr, f € Vy forall k£ € Z;

c. f(t) € Vjifand only if f(2t) € Vj1;

d.NV; ={0}andUV; = L*(R);

e. J¢ € V; such that{7,¢} is an ONB forlj,.

The functionp is ascaling functiorfor the {V;}.

The proof of the following fundamental theorem can be found in [25], [26], [14]. As
in Section 3 there is an interplay between Fourier series and Fourier transforms. In fact,
1-periodic Fourier seriefl,, defined by the property

1
[Ho(3) 2 + | Holy + 5)I =2 ae,
are essential. These series quadrature mirror filters(QMFs).

THEOREM4.5. Let{V; : j € Z} be an MRA of_?(R) with scaling functiony. There is
a constructible orthonormal wavelet, depending om. In fact, a choice for the function

IS
Y(t) = V2 hi[n]p(2t — n),

where convergence is ib*(R), where
Vn € Z, hl[n] = (—1)”h0[—n + 1],

and where{ hy[n]} is the sequence of Fourier coefficients of the QMIfe L>°(T), which in
turn is a solution of the frequency scaling equation

V26(27) = Hy(v)d(7) in L*(R).

H, is the Fourier series with Fourier coefficienfs, [n]}.
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Vs
Va
Vs Vp
W1
W2
Vi Wa
Vo Wo
Ws
FIGURE 3
REMARK 4.6. a.Let{V;} be an MRA and letV; be the orthogonal complement of
V; inVj. In light of Definition 4.4and Theorem 4.5we have

(4.1) L’®) =P W,

JEL

The wavelet) of Theorem 4.5s an element of¥, and {7, } is an ONB fori¥;,. The
inclusionsV; C Vj4, and the direct sum of (4.1) are illustrated in Figure 3.

b. Letg = 11y, and letV;, = span {7,,¢}. Ifwe setl; = {f € L*(R) : 27/2f(27t) € Vy}
then we obtain thelaar MRAof L?(R); and the function) of Theorem 4.5s theHaar
orthonormal waveletSimilarly, ifp € [1,00) and

Vo ={)_anmé: {as} € °(2)},
then we obtain the Haar MRA @f (R).

EXAMPLE 4.7 (MRA and change of basis).et {V;} be an MRA ofL?(R) with scaling
function¢ € V4 and orthonormal wavelep € W, constructed as imheorem 4.5 Thus,
{mn¢} is an ONB forl, and{r,'} is an ONB fori¥,.

a. Besided 7,6}, the sequence of functions

1 t 1 t
—¢(= —n), - —n),
759G~ J5¥(G )

V22
wheren € Z, forms an ONB forl,.
To see this, first note that

4.2)

1 .t
ﬁﬂﬁ(i — n) € V_l.

In fact, if f(t) = ¢(t — n), thenf € V; so thatf(%) € V_; by definition of an MRA.
Thus, (4.3) is obtained sing&%) = ¢(5 — n) and sincel_; is a linear subspace of

(4.3) Vn € Z,
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L*(R). Next, we can assert that
1 t
4.4 Z, —(=— L
(4.4) Vn € Z, \/5(2 n) € W
In fact, if g(t) = (¢t — n), theng € W, so thatg(%) € W_,. Thus (4.4) is obtained

sinceg (%) = (£ — n) and sincelV_, is a vector subspace d@(R). The orthonor-

mality of the functions in (4.2) is a consequence of the orthonormality,@f} in V4,
the orthonormality of 7,¢} in Wy, and the fact that, = V_; & W_,. For example,

[ S0t = m=ot% —arit = [ otu = widta = qidu = 500.0).

Further, the fact that the functions in (4.2) form an ONB ¥gris a consequence of the
just proved orthonormality and the following calculations for arbitrgiye V:

f=fv+ fw,wherefy € V_y, fy € W_y;
fv(2t) € V; so that

fo2t) = {fv(2u), Tad(u)7ud(t) in L*(R),

and thus,

L d)(E - n) S V_l.

fv(t) = Z(\/ﬁfv(2u),7n¢)(u)>% 5

and finally i (2t) € W, so that
fwr(2t) = (fw (2u), Tt (u)) 71 (¢) in L(R),

and thus

fw (1) = Z(\/ifw(%),W(U))%@b(% Cn)e Wy,

b. The procedure of par can be used to make other ONBs T@r In fact, for any fixed
m € N we have the orthogonal complement direct sum
Vo=V ®@W_n ®@W_ 1 ®©W_ o @ ... & W_y;

and hence the sequence of functions

¢—m,na w—m,na @Z)—m-i-l,na e ;@Z)—l,n,

wheren € Z, forms an ONB foii;.
This procedure can be generalized significantly by introducing the idea of wavelet-
packets.

5. Waveletpackets

Let {V;} be an MRA of L*(R) with scaling functiony € V; and orthonormal wavelet
Y € W, constructed as iltheorem 4.5We have

$(t) = ho[n]éra(t) €V in L*(R)

and
= Min]pia(t) Vi in LX(R).
Thus, . .
Sy — T b Sy — = T Ty 2/
The ONB splitting ofV; for a given MRA, reflected by (4.2), can be effected at every

node in the dyadic tree dfigure 4 (At this point we have only labeled the nodés V_;,
W_1, Voo, W_5, V_3, W_3,---.) To see how this is done, we begin with the Ol ¢} for
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FIGURE4

Vq, or, equivalently, the ONBe_,¢} for V; C L2(R). Then the nodes designated; and
W_, can be characterized by the formulas writterfrigure 5

V,1 W,I
-1n(t) = F58(5 = n) & c_on(NV20(27), bo1a(t) = FU(E —n) & e an(7)V20(27)

\/§¢A5(27) = a(v)Ho(fy) \/575(27) = 5(7)[{1(7)
Figure 5

In particular,{e_zn(y)\/§ng$(27)} is an ONB forl/_, and{e_Zn(y)\/E@Z(m)} isan ONB
for /I/IZI. We obtain an ONB splitting oF_; by the sequence

1, 1, ¢ _

(5.1) ()0l — ). (505 —m): n e Z),

noting that

(5.2) (26(L —m} C Ve and {(—=)20(- — n)} C Weo,
V2 N9z = NoURAY? =

In the case of (5.1) and (5.2), the analogu€&iglre 5 for the nodes designatéd, andWW_,
coming from the splitting o ;, is given by the formulas written iRigure 6.

V., W_,
bosalt) = (L)?6(% — n) Yoan(t) = (Z5)20(4 — n)
<—— —
e 1n(7)(V2)23(47), e (1) (VD).
(V2)23(47) = $(1) Ho() Ho(27) (V2)*5(47) = $(7) Ho(7) Hi (27)

Figure 6
In particular,{e_4,(7)(v2)2p(47)} is an ONB forV_, and{e_4,(7)(v/2)%)(47)} is an ONB
for W_,. Clearly, the last formulas iRigure 6are consequences of equation (5.1), e.g.,

(V2)20(47) = V26(27) Ho(27) = &(7) Ho(7) Ho(27).
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At this point it is reasonable to ask if there is a natural splittinglof; in Figure 4to
complete the remaining two nodes which are on the same levél,aandV_,.

The answer is “yes” and the procedure results in new ONB§foin order to describe
the procedure it is convenient to use the classical dyadic tree notation, e.g., [2], Remark 3.9.4.
Thus, at level, X denoted/; at levell, X! and X denotel’_; andWW_,; at level2, X(Qoyo)
andX(ZO’l) denotel_, andW_,.

In the case of level, the subscripb of X corresponds to the subscripbf H, on the
left side ofFigure 5 and the subscript of X! corresponds to the subscripof H, on the
right side ofFigure 5.

Inthe case of level, there are the four consecutive spa&gs, , X7 ,), X, 5, andX7 .
The subscript0, 0) of X(QO,O) = V_, corresponds to the two subscriptand0 of H,(~) and
Hy(27) on the left side ofigure 6 The subscript0, 1) of X, , = W, corresponds to the
two subscript® and1 of Hy() and H,(2v) on the right side oFigure 6.

Because of this pattern we associate the func&@r}Hl (7)Ho(27) with X (21’0) and the
function () H; (v) Hy (2) with X(ZM). In this way, level2 of the tree inFigure 4 can be
completed. In fact, we define the functiohg and#, ; by the formulas

(\/5)29\1,0(227) = QZ(’Y)Hl(’Y)Ho(QV)
and R R

(\/5)291,1(22’7) = ¢(v)Hi(v)H1(27).
ThenX?, , is defined as

1 t .
X(Zl,o) = Span{wem(? —n): neZ} in L*(R)
andX? |, is defined as
1 t

X{y =span{———0(5; —n): Z} in L*(R).
(1,1) Span{(ﬂy 1,1(22 n): ne€zy in L*(R)

It is easy to prove tha{tﬁel,o(g2 —n)}is an ONB forX7, ), that{ﬁeu(%2 —n)}

is an ONB forX? ,,, and that
W_i = Xll = X(Zl,o) ® X(Ql,l)a
an orthogonal complement direct sum.

The previous details give rise to the following general procedure for a given MRA. We
form the tree{ X : r > 1}, wherem € {0,1,2,3,---,2" — 1} and whereX{ = ;. Each
elementX/ of the tree is a closed linear subspacé/of Further,X] , » > 1, is determined
by the function

(63) 2P0 (27) = GO Ha (N HL (2 H,(27) . Ho (2771),
m=3"_, €27 ande; € {0,1}, in the sense that
t
(5.4) X = spﬁ{?’"ﬂ@q,...,er(? —n): n €L},
3 ,
(5.5) {2*7"/2961,...7671(5 —n): neZ} isan ONB forX?
and

27—1

(5.6) Vo= P X7,
m=0
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an orthogonal complement direct sum.

TheWavelet Packet Algorithis the tree{ X } of subspaces df; defined by (5.3), (5.4),
(5.5), and (5.6). We have written the orthogonal complement direct sum in (5.6) in terms of
the natural ordering, 1,--- ,2" — 1. In fact, at levelr, the spaces(;, are ordered, left to
right on the tree, by bit reversal ordering.

6. Multidimensional Orthonormal Wavelets

EXAMPLE 6.1 (Rectilinear wavelet decompositiond)et ¢/ be an orthonormal wavelet
for L*(R). For each(j, k) € Z* and (m, n) €Z?, define the tensor product
Vi ® Ui (1, T2) = (1) Y (22).
Then{v;r ® Ymn : j, k,m,n € Z} is an ONB forL?*(R?). For every ordered 4-tuple
(4,k,m,n,) € Z*, we define
(¥ ® ¥)jeman(@1,T2) = Vjk ® Ymn(21, T2).

As such we shall say that ® « is a rectilinear orthonormal waveldor L?(R*). Notice

that (¢ ® v),km,» Providesseparatedilation and translation in ther; and z, variables.
Consequently, the wavelet decomposition of arbitréry L?(R?) involves rectangles of all
shapes, e.g., very long and skinny ones, in order to achieve reconstruction. We refer to this
approach as theectilinear tensor product wavelet decomposition

ExAMPLE 6.2 (MRA wavelet decompositions).et{V;} be an MRA of.?(R) with scal-
ing function¢ and orthonormal wavelep constructed fronTheorem 4.Define the tensor
product

¢ @ (71, 72) = ¢(11)9(72),

and letV? be the set of functions: R> — C having the form
Fanm) = ) Cnnd® dxr — ni,as — ny),
nl,ngeZ
wherec = {cp, 0, } € 2(Z%). Then, V@ = span{f ® g(x1,22) : f,g € Vo} = Vo®Vj, the
projective tensor product. Next, set
V}Z ={g(z1,22) = f(2j$1, 2j$2) 1 fe %2}‘
It can now be proved thgtV” : j € Z} is an MRA ofL*(R*) with scaling functions ® ¢.

The orthogonal complement Bf in V? is denoted byV?.
Clearly,

Vi = Vi@V = (Ve W))e(V; e W)
= VoV e (W) ® (V;oW;) ® (W;0W))].
Thus, three wavelets, viz.,
¢ @ V(w1,T2) = d(21)Y(22),
Y ® (21, 72) = P(21)P(T2),
Y @ Y(21, 12) = (1) (72),
are required to provide an MRA wavelet decompositioh<fR?).
In light of this background, the following is an amazing result, e.g., [13].
THEOREM 6.3. There existds’ C R? such that) = 1 defines an orthonormal wavelet
for L2(RY), i.e.,
{n(x) = 292200 — k) : j € T,k € 2%
is an ONB forL?(R?).
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It was elementary to construct wavelet ONBs f8(R?) of the form

Vir by @ -+ ® Vjy kas

where) is an orthonormal wavelet fok?(R) andjy, ..., ja, k1, ..., k¢ € Z (Example 6.1
Theorem 6.3s a fundamentally deeper result since the dilation depends only enZ.
Similarly, it is a deeper result than the MRA approaciiRfo(Example 6.2
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