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ABSTRACT. Research in time-frequency representations (TFRs) has often been di-
rected towards determining how two-dimensional weighting kernels, which operate
convolutionally on Wigner-Ville distributions, effect desired properties and trade-offs
of the resulting representation. For example, a kernel with a diamond-shaped support
region results in a spectrogram which has the well-known trade-off between time and
frequency resolution. Much past research has been directed at improving resolution,
while ameliorating the quadratic interference of the Wigner-Ville approach. We take
an entirely different view: Our final goal is data-trained pattern classification, where
high resolution may only increase the need for training data. We thus change the
standard approach to automatically determine the kernel which minimize the time and
frequency resolution needed to differentiate multiple classes. The kernels are called
“class-dependent kernels.” We have applied these class-dependent kernels to prob-
lems in multi-sensor helicopter fault diagnosis. In this application, perfect detection
of the occurance of a fault and perfect classification of the type of fault was achieved.
Also, the optimal sensors for each fault were automatically chosen.

1. Introduction

Vibration patterns from accelerometers mounted on gearboxes are, in general, analyzed by
using time- or frequency-domain information. Past researchers have applied either time-
domain (e.g. [1]), frequency-domain (e.g. [2]), or combined time-frequency (e.g. [3]) ap-
proaches to fault diagnoses in gearboxes. In the latter case, the application of time-frequency
or related (e.g. [4]) techniques have used transform-limited or empirically-determined time
and frequency resolutions for representations of examples of healthy and failed gearboxes.
Our recent approach has been to instead allow the classification or detection task to, given
adequate and representative training data, optimally determine the relative role of time and
frequency resolution in the representation [5,6]. For example, if transients occurring at a cer-
tain phase of rotation are important for detecting imminent failure due to crack formation, it
would be best to have high resolution in time. Alternatively, if a harmonic or a set of harmon-
ics at certain regions in frequency are important for detecting root fatigue, it would be best to
have high resolution within these frequency regions.

Our approach is also based on the premise that automatic detection or classification sys-
tems should be provided with only enough input resolution to achieve needed performance.
Namely, too great a resolution will potentially require much too large of a detector or classi-
fier training data set and will also be sensitive to irrelevant features and/ or noise. Also, large
dimensionality detectors or classifiers are computationally expensive and slow. It should also
be noted that we are not referring to or bound by implicit Heisenberg or window-related reso-
lution limitations—we are instead explicitly limiting the resolution to optimize the best early
detection or classification of faults.
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2. Background

Modern time-frequency representation (TFR) research often begins with choosing a kernel
function�[n;m] which operates upon an instantaneous autocorrelation function

�[n;m] �
NX

n0=n

x[n0]x[n0 �m]:

The resultant TFR (P [n; k]) arises from the discrete Fourier transform (inm) of the result
of multiplying the kernel (inm) and convolving the kernel (inn) with this instantaneous
autocorrelation function (�[n;m] ). As an alternative, a discrete Fourier transform (inn) can
be applied to this instantaneous autocorrelation function (�[n;m] ) to provide an ambiguity
function

A[l; m] = Fnf�[n;m]g �
M�1X

n=0

�[n;m]e�j 2�
M

nl:

There is an equivalent kernel (�[l; m]) which operates multiplicatively in both dimensions
upon this ambiguity function (A[l; m]). These two kernels are also related by a discrete
Fourier transform (inn)

�[l; m] = Fnf�[n;m]g �
M�1X

n=0

�[n;m]e�j 2�
M

nl:

Any non-zero extent of�[l; m] in l and/orm can effect a smoothing ofP [n; k] in time
and/or frequency, respectively, creating a new “smoothed” distributionCC[n; k]. For ex-
ample, if�[l; m] = 0 for all values except for those on thel = 0 axis, then all temporal
information is smoothed and only steady-state frequency information inP [n; k] is retained
in CC[n; k]. In past time-frequency research, kernels for quite a number of properties, such
as finite-time support and minimizing quadratic interference, have been determined. Though
some of these past time-frequency representations may offer advantages in classification of
certain types of signals, the goal of sensitive detection or accurate classification has not been
explicit. The above kernel’s (�[l; m]) capacity to reduce time and/or frequency resolution,
embodied within the explicit goal of optimal classification (i.e. minimum number of classifi-
cation errors), is the basis of the approach we outline below. WhenP [n; k] is smoothed with
this goal the resulting TFR,CC[n; k], is called the “class-conditional TFR.”

3. Our Approach and Methods

We utilized data provided by the Applied Research Laboratory (ARL) at Penn State. This
data contained eight separate and individual fault types and associated normal (no fault) con-
ditions. These data were collected utilizing Westland Helicopters Ltd.’s Universal Transmis-
sion Test Rig to test a CH46 aft transmission. Eight accelerometer time series were produced
for each fault condition at varying torque levels [8].

The multi-dimensional time series for each fault was divided into 1500-point, nonover-
lapping and contiguous one-dimensional segments (xf;a;i[n]) wheref was the type of fault
(f = 9 for no fault),a was the accelerometer channel, andi was the index of the segment.
(These same subscripts will also be used for subsequent kernel and ambiguity function nota-
tion.) Each segment was individually demeaned and scaled by its estimated standard devia-
tion. The total number of segments for each fault was 274, where each was 14.5 milliseconds
long.
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In order to experimentally study a proposed fault detection/ classification system, the
above data segments were randomly divided into equal-sized and non-overlapping training
and test sets. The training sets were used to determine the parameters of the system below
and the independent test sets were used to predict the performance.

Our approach is a modification of the signal class-dependent kernel approach which has
been described in more detail before [5,6,7]. Simply stated, this approach finds the single
kernel (�fg;a[l; m]) which optimizes the mean-square distance between estimated ambigu-
ity functions (Af;a;i[l; m] andAg;a;i[l; m]) representing two different classes of data (f and
g). The points in this kernel are then ranked according to separation between classes, where
choosing the kernel point with the largest interclass separation corresponds to a maximum
separation (in theory) between classes. Thus for actual classification of unknown time se-
ries, the ambiguity functions are multiplied (inl andm) by a binary kernel mask, which
is set to “1” at one optimal, and optionally, subsequently lower-ranked kernel points (often
required in practice). These kernel points, depending upon their locations, effect a smooth-
ing in time and/or frequency of the unknown data. The smoothed version is then compared
to smoothed representatives of training classes. As an added result, the kernels for opti-
mal separation can be transformed to a time-frequency representation (the class-conditional
TFRsCCf;a[n; k] andCCg;a[n; k]) and the implicit optimal time-frequency smoothing can
be viewed after training.

As we have most recently found for this Westland Data, the above mean-square distance
is inadequate for handling the wide range of within-class variances seen. Thus, we have
modified our earlier approach [5,6] to find the kernel�fg;a[l; m] which optimizes a Fisher’s
discriminant distance between estimated ambiguity functionsAf;a;i[l; m] andAg;a;i[l; m], rep-
resenting two different classes of data. The Fisher’s discriminant for two classes, classf and
classg, is represented by

FDRa[l; m] �
j1
I

P
iAf;a;i[l; m]� 1

I

P
iAg;a;i[l; m]j2

1

I

P
i jAf;a;i[l; m]j2 � 1

I

P
i jAg;a;i[l; m]j2

where the above sums index through thel segments of training data available for each class.
The Fisher’s discriminant distance provides a rank-ordering of kernel points for classification.
The optimal number of points will be determined by evaluating the classifier performance
using theK best (i.e.K points with the largest Fisher’s discriminant distance) kernel points.

To classify a particular unknown test example, anM byM (in this paper we present data
using eitherM = 16 orM = 64) ambiguity function was estimated for each 1500-point seg-
ment of the unknown time-series. After masking with the appropriate kernel, the unknown
class is estimated via a Maximum Likelihood (ML) detector. The mean and covariance matri-
ces (utilized by the ML detector) for each class are estimated from the training data. For our
results reported below, we restricted our study to two classes: fault or no-fault discrimination.
However, as outlined in [7], extensions to multiple classes are straightforward.

We also propose a measure of confidence in our classification. By finding a ratio R of the
distance to the closest class over the distance to the other class, we can define a confidence
measure:

Confidence �
1

1 +R

which ranges from 0.5 to 1.0.

4. Results

We summarize our results with four key points and a few representative example plots.
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FIGURE 1. Classifier performance (top) and certainty (bottom) for discrimination
between fault 8 (quill shaft crack propagation, run: #87 torque: 100%) and no fault
(run: #01, torque: 100%) using accelerometer 4. The top figure shows the average
performance plus or minus one standard deviation.

1. When the system is trained and then applied at consistent torque levels, it is possible
to individually classify all eight faults in the Westland Data with 100by 16 ambiguity
function and data from one accelerometer. Namely, by using the previously outlined
approach to train one class with no-fault data at a given torque level and another class
with data from one of the eight faults at the same torque level, the accuracy for auto-
matic classification of left out (not in the training data) fault/no-fault conditions was
100100

2. The best point of the optimal kernel was on the kernels’ (�[l; m]) l = 0 axes for all
fault conditions. What this means is that only frequency and not time information was
needed for the above 100given by Figure 2:

A more illustrative representation of the same information would be the magnitude
and phase of the difference between the fault and no-fault distributions. Figure 3 shows
this difference for the class-conditional TFRs given in Figure 2. It is important to note
that only magnitude and not phase information is important in the optimal classifier.

3. By including more kernel points, the classification performance drops for the single
torque case. Also, a significant number of non-zero kernel points are now well off the
kernel’s l=0 axes and temporal information is included in the classification. Figure 4
shows an example result when the 50 kernel points were included:
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FIGURE 2. Magnitude of the unsmoothed Rihaczek time-frequency distributions
(top) for fault 8 (quill shaft crack propagation, run: #87 torque: 100%) and no fault
(run: #01, torque: 100%). Magnitude of the optimally smoothed class-conditional
distributions for fault 8 and no fault classes (bottom) generated using 1 kernel point
from accelerometer 4.

4. Classifier performance drops from the 100system is trained and tested with multiple
torques using a 16 by 16 kernel. However, if the resolution of the initial time-frequency
distribution is increased (by using a 64 by 64 kernel) we again achieve 100Figure 5
shows the performance of the classifier trained on four different torque levels using an
initial TFR with a 64 by 64 point kernel. Optimal classification is achieved with 6 ker-
nel points for this fault type. Also, the scaled, multiple-torque, case still only requires
frequency information for optimal classification. Figure 6 shows the average magni-
tude and phase difference between fault and no fault class-conditional distributions

5. Summary of Performance

We propose two potential system configurations, one which requires torque information to
classify faults and the other which does not. The system that did not require torque informa-
tion (the simpler) achieved almost perfect classification over a variety of faults. The system
that required a classifier for each fault and torque level tested achieved perfect classification
under all conditions. The results of our analysis are presented below.
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FIGURE 3. Differences between class-conditional magnitudes (top) and phases (bot-
tom) for fault 8 (quill shaft crack propagation, run: #87 torque: 100%) and no fault
(run: #01, torque: 100%) generated using 1 kernel point from accelerometer 4.

6. Conclusions

We have verified that our class-conditional time frequency approach can be used to automat-
ically detect seeded faults with 100% accuracy. Implicit in these studies was the observation
that frequency information alone, e.g. long-term spectral estimates, would have been ade-
quate for this accuracy. We have also shown that constructing a time-frequency represen-
tation which is optimized for classification ab initio could be more efficient than applying
classifiers and detectors to standard or high-resolution time-frequency representations. We
have also found that an increase in resolution of the initial time-frequency representations is
necessary to handle widely varying torque conditions. However, this multiple-torque system
still requires frequency information alone. Further study and open discussion is needed to de-
termine how our automatically determined stationary frequency weightings correspond with
the mechanics and physics of the faults.
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FIGURE 4. Magnitude of the unsmoothed Rihaczek time-frequency distributions
(top) for fault 8 (quill shaft crack propagation, run: #87 torque: 100%) and no fault
(run: #01, torque: 100%). Magnitude of the suboptimally smoothed 50-point class-
conditional distributions for fault 8 and no fault classes (bottom) generated using 50
kernel points from accelerometer 4.
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FIGURE 5. Classifier performance (top) and certainty (bottom) for discrimination
between fault 8 (quill shaft crack propagation, run: #79 with torque: 27%, run: #82
with torque: 50%, run: #84 with torque: 70%, run: #87 with torque: 100%) and no
fault (run: #02 with torque: 27%, run: #03 with torque: 50%, run: #04 with torque:
70%, run: #01 with torque: 100%) using accelerometer 4. The top figure shows the
average performance plus and minus one standard deviation.
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FIGURE 6. Differences between class-conditional magnitudes (top) and phases (bot-
tom) for fault 8 (quill shaft crack propagation, run: #79 with torque: 27%, run: #82
with torque: 50%, run: #84 with torque: 70%, run: #87 with torque: 100%) and no
fault (run: #02 with torque: 27%, run: #03 with torque: 50%, run: #04 with torque:
70%, run: #01 with torque: 100%) generated using 6 kernel points from accelerome-
ter 4.
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Fault Type Best Optimal Number Error Rate
Accelerometer of Kernel Points (% correct)

Epicyclic Planet
Gear Bore/Bearing/

Inner Race Corrosion 3 21 99.8%
Spalling Defect

(Fault 3)

Spiral Bevel Input
Pinion Spalling 7 10 100%

(Fault 4)

Collector Gear
Crack Propagation 1 17 99.9%

(Fault 7)

Quill Shaft
Crack Propagation 4 6 100%

(Fault 8)

FIGURE 7. Classifier Performance over full range of torque levels (27, 50, 70 and
100% torque)
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Fault Type Best Optimal Number Error Rate
Accelerometer of Kernel Points (% correct)

Epicyclic Planet
Gear Bore/Bearing/ Depends

Inner Race Corrosion 3 on torque 100%
Spalling Defect

(Fault 3)

Spiral Bevel Input
Pinion Spalling 7 1 100%

(Fault 4)

Collector Gear
Crack Propagation 1 1 100%

(Fault 7)

Quill Shaft Depends on
Crack Propagation 4 torque 100%

(Fault 8)

FIGURE 8. Classifier Performance for a Fixed Torque Level (27, 50, 70 or 100% torque)
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