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ABSTRACT. This is a survey of some recent results on the phenomenon of the “in-
visible spectrum” for Banach algebras. Function algebras, formal power series and
operator algebras are considered. This includes a quantitative treatment of the famous
Wiener-Pitt-Sreider phenomenon for convolution measure algebras on locally com-
pact abelian (LCA) groups. Efficient sharp estimates for resolvents and solutions of
higher Bezout equations in terms of their spectral bounds are considered. The smallest
spectral “efficiency hull” of a given closed set is introduced and studied. Using the
spectral hulls we define uniformly bounded functional calculi for elements of the al-
gebras in question. This program is realized for the measure algebras of LCA groups
and for the measure algebras of a large class of topological abelian semigroups; for
their subalgebras—the (semi)group algebra of LCA (semi)groups, the algebra of al-
most periodic functions, the algebra of absolutely convergent Dirichlet series, as well
as for the weighted Beurling-Sobolev algebras, for H1 quotient algebras, and for
some finite dimensional algebras.
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Part I. Quantitative version of the Gelfand theory

1. Introduction: Efficient Inversion

1.1. Basic motivations

There are three classical problems of harmonic analysis and function theory related to a
phenomenon we call invisible spectrum. Formal definitions are contained in Subsection 1.2
below.

The first problem comes from convolution equations and is related to what is usually
called “the Wiener-Pitt phenomenon”. Namely, let G be a locally compact abelian group
(LCA group) written additively, and M(G) the convolution algebra of all complex measures
on G. The fundamental problem is to find an invertibility criterion for measures � 2 M(G),
that is, a criterion for the existence of � 2 M(G) such that � � � = Æ0, Æ0 being the unit of
M(G) (the Dirac Æ-measure at 0). An obvious obstruction for invertibility is the vanishing
of the Fourier transform �̂(
) = 0 at a point 
 of the dual group Ĝ, since the equality �̂�̂ � 1
is equivalent to the initial convolution equation. Generally, the boundedness away from zero

(1.1) Æ = inf

2 bG

jb�(
)j > 0

is necessary for � to be invertible. N. Wiener and R. Pitt (1938), and Yu. Sreider (1950, a
corrected version of Wiener and Pitt’s result) discovered that, in general, this is not sufficient.
Namely, there exists a measure � on the line R whose Fourier transform

(1.2) �̂(y) =

Z
R

e�ixy d�(x); y 2 R

is bounded away from zero but there exists no measure � 2 M(R) such that �̂(y) = 1=�̂(y)
for y 2 R. This result still holds true for an arbitrary LCA group G which is not discrete,
see [Ru1], [GRS], [HR] for references and historical remarks. Using the Banach algebra lan-
guage, one can say that the dual group Ĝ, being the “visible part” of the maximal ideal space
M =M(A) of the algebra A =M(T), is far from being a dense subset ofM. Nonetheless,
later on we will see that some quantitative precisions of (1.1), namely a closeness of the norm
k�k and Æ of (1.1), lead to the desired invertibility, and even to a norm control of the inverse.

On the contrary, for a discrete group G, the classical Wiener theorem on absolutely con-
vergent Fourier series tells that condition (1.1) implies the invertibility of �, and, moreover,
M = eG. However, in this setting too, the problem of the norm control for inverses ��1 is still
meaningful and interesting, in spite of the Wiener theorem, since the latter does not yield any
estimate. In fact, from the quantitative point of view, there is no big difference between these
qualitatively polar cases (we mean the cases of nondiscrete and discrete groups). It turns out
that, in both cases, one can control the norms k��1k for Æ > 0 close enough to the norm k�k,
but this is not the case for small Æ > 0.

The second problem we are interested in is to distinguish, among all unital Banach al-
gebras A, those permitting an estimate of the resolvents only in terms of the distance to the
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spectrum. More precisely, we want to know for which algebras A there exists a function '
such that

(1.3)


(�e� f)�1



 6 '(dist (�; �(f)))

for all � 2 C n�(f) and all f 2 A, kfk 6 1. Here e stands for the unit of A, and �(f)
for the spectrum of f in the algebra A. We treat this problem in a more general context of
norm-controlled functional calculi, that is, as a partial case of the norm estimates problem for
functions operating on a Banach algebra. See Chapter 2 for more details.

The third problem is a multi-element version of the previous two. Postponing precise
definitions and discussions to Subsection 1.2, we mention here the classical corona problem
for the algebra H1(
) of all bounded holomorphic functions on 
, an open subset of C n or
of a complex manifold. Recall that the problem is to solve the Bezout equations

(1.4)
nX

k=1

gkfk = 1

in the algebra H1(
), where the data fk 2 H1(
) satisfy an analogue of condition (1.1),

(1.5) Æ2 = inf
z2


nX
k=1

jfk(z)j2 > 0;

and to estimate solutions gk 2 H1(
). The Banach algebra meaning of the corona problem
is well known; namely, the existence of H1(
) solutions for any data satisfying (1.5) is
equivalent to the density of 
, the “visible part” of the spectrum M = M(H1(
)), in M.
In what follows, we consider a norm refinement of this problem for several algebras different
from H1(
).

1.2. (In)Visibility levels. Main problems

Let A be a commutative unital Banach algebra and X be a subset of the maximal ideal
space of A (the spectrum of A),M =M(A), X �M(A). We write f 7�! f̂(m) form 2M ,
or simply f 7�! f(m), for the Gelfand transform of an element f 2 A, and hence, staying on
X , we can embed A into C(X), f 7�! f(x) = Æx(f) for x 2 X , where Æx 2 M stands for
the point evaluation Æx(f) = f(x), f 2 A. In what follows, we regard closX as the visible
part ofM.

Recall that the spectrum �(f) of an element f 2 A coincides with the range f(M) of the
Gelfand transform. The following definition formalizes different levels of “visibility” of the
spectrum.

DEFINITION 1.2.1. The spectrum of A is called n-visible (or, n-visible from X), n =
1; 2; : : :, if f(M) = clos (f(X)) for all n-tuples f = (f1; : : : ; fn) 2 An = A� : : :� A; and
it is called completely visible ifM = closX .
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It is clear that (n + 1)-visibility implies n-visibilty for any n > 1, and the complete
visibility is equivalent to n-visibility for all n > 1. Moreover, the Gelfand theory of maximal
ideals makes evident the following lemma.

LEMMA 1.2.2. For a commutative unital Banach algebra A, the following properties are
equivalent.

(i) The spectrum of A is n-visible.
(ii) For every f = (f1; : : : ; fn) 2 An satisfying

(1.6) Æ2 =: inf
x2X

nX
k=1

jfk(x)j2 > 0;

there exists an n-tuple g 2 An solving the Bezout equation

(1.7)
nX

k=1

gkfk = e:

In this language, the Wiener-Pitt phenomenon is exactly the 1-invisibility of the spectrum
for the measure algebra M(G), if we stay on the dual group X = Ĝ. Rigorously speaking,
we mean the algebra of Fourier transforms FM(G) = f�̂ : � 2 M(G)g endowed with the
norm k�̂k = k�k and embedded into C(Ĝ). In what follows, we systematically identify these
algebras.

The next definition specifies the previous one in the case of norm controlled invertibility
instead of simple invertibility.

DEFINITION 1.2.3. Let A and X be as above, and let 0 < Æ 6 1. The spectrum of A
is called (Æ � n)-visible (from X) if there exists a constant cn such that any Bezout equation
(1.7) with data f = (f1; : : : ; fn) 2 An satisfying (1.6) and the normalizing condition

(1.8) kfk2 =:
nX

k=1

kfkk2 6 1

has a solution g 2 An with kgk 6 cn. The spectrum is called completely Æ-visible if it
is (Æ � n)-visible for all n > 1 and the constants cn can be chosen in such a way that
sup

n>1 cn <1.

Clearly, there exist the best possible constants, in the following sense. Setting

(1.9) cn(Æ) =: cn(Æ; A) = cn(Æ; A;X) = sup
f

finf(kgk :
nX

k=1

gkfk = e; g 2 An)g;

where the supremum is taken over all f 2 An satisfying (1.8) and (1.6), we get the smallest
number for which cn = cn(Æ) + � meets the requirements of Definition 1.2.3 for every � > 0.
In particular,

(1.10) c1(Æ) = supf


f�1

 : f 2 A; Æ 6 jf(x)j 6 kfk 6 1; x 2 Xg;
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and, in this case, we can take c1 = c1(Æ) in Definition 1.2.3; here and in what follows we
formally set kf�1k =1 for noninvertible elements of A.

We define the n-th critical constant Æn(A;X) by the relation

Æn(A;X) = inffÆ : cn(Æ; A;X) <1g
1.2.4. Main problems. Our main objective is to estimate from above and from below,

and (if possible) to compute the critical constants Æn(A;X) and the majorants cn(Æ; A;X) for
basic Banach algebras A and, thus, to study norm controlled visibility properties for these
algebras.

For n = 1 we deal with more general objects. Namely, we are interested in describing
functions boundedly acting on a given algebra. Supposing that a “visible part” of the spectrum
is fixed, X �M(A), we can say that a function (say, ') defined on � � C acts on an algebra
A if for every a 2 A with â(X) � � there exists b 2 A such that 'Æ â = b̂ on X . A “bounded
action” is defined in the same way but adding an estimate of the form kbk 6 kk'k�, where
k = k(�;A;X), and k � k� is an appropriate norm majorazing k'k� = sup� j'j. We mention,
however, that such a definition is too broad to be useful: the spectral inclusion â(X) � �
alone, without any norm restrictions, cannot imply the boundedness of compositions. We
formalize this statement as follows.

LEMMA 1.2.5. Assume that jâ(x)j > Æ(x 2 X) always implies ka�1k 6 C, for some
positive Æ and C. Then A is a uniform algebra whose norm is equivalent to the sup norm on
X: kâkX 6 kak 6 (2C + Æ)kâkX for all a 2 A.

The lemma shows that certain norm requirements are necessary. The classical results
on functions operating on Fourier transforms show many specific examples of this kind, see
[HKKR], [Ru1] and further references therein.

In paper [N4], adding the normalizing condition kak 6 1 to the spectral inclusion â(X) �
� we look for a “minimal spectral hull” h(�) = h(�;A;X) such that functions holomorphic
on h(�) boundedly act on a given algebra. Our approach to this problem is explained in
Section 2.

1.3. Outline of the theory

The main goal of the theory presented below is to estimate, from above and from below,
and (if possible) to compute, the critical constants Æn(A;X) and the majorants cn(Æ; A;X)
for some commutative Banach algebras frequently used in harmonic analysis and for the cor-
responding (customary) visible parts X of their spectra. The basic algebras are the following
ones:

(i) the measure algebra M(G) on an infinite LCA group G with X = Ĝ, and in partic-
ular, the Wiener algebra W = F l1(Z) of absolutely convergent Fourier series with X = T

(Section 5);
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(ii) the analytic Wiener algebra W+ = F l1(Z+) with X = D = fz 2 C : jzj 6 1g
(Section 5);

(iii) the weighted Beurling-Sobolev algebras of positive spectral radius, both analytic
F lp(Z+; w) (with X = D ), and “symmetric” F lp(Z; w) (with X = T), for some class of
regularly growing weights w(n) tending to 1 as jnj �! 1 (Section 7).

In Section 2, following [N4], we introduce two general methods: a method for upper
estimates of the visibility constants cn(Æ; A;X), and a method for their lower estimates. The
method for lower estimates for cn(Æ; A;X) described in Subsection 2.3 refers to elements of
A with “almost independent” powers. In Section 5 we specify this method for the algebras
M(G), M(S) using the Sreider measures, which are defined as measures with real Fourier
transforms and the spectrum filling in a disc. In particular, a short proof is given, following
[N4], to the fact that Æ1(W+; D ) = 1=2 and c1(Æ) = (2Æ � 1)�1 for 1=2 < Æ 6 1 and c1(Æ) =
1 for Æ 6 1=2. A different, longer but more elementary proof of this fact is contained
in [ENZ]. Independently, another elementary proof of the equality Æ1(W+; D ) = 1=2 was
recently presented by H.S. Shapiro at the 6th St. Petersburg Summer Analysis Conference,
see [Sh2].

In the same Section 5, we show that c1(Æ;FM(G); Ĝ) = 1 for 0 < Æ 6 1=2, and
thus Æ1(FM(G); Ĝ) > 1=2, for every infinite LCA group G. Moreover, (2Æ � 1)�1 6

c1(Æ;FM(G); Ĝ) 6 cn(Æ;FM(G); Ĝ) for 1=2 < Æ 6 1, and cn(Æ;FM(G); Ĝ) 6 (2Æ2 �
1)�1 for 1=

p
2 < Æ 6 1. Again, these results are contained both in [N4] and [ENZ] but the

proofs are different.
It should be noted that some of these results were mentioned even in Shapiro’s paper [Sh1]

(Remarks 2 and 3, and a footnote on page 235 of [Sh1]), where they were attributed to
Y. Katznelson (for c1(Æ;W;T) = 1 for Æ < 1=2), to Y. Katznelson and D. J. Newman
(for c1(Æ;W;T) <1 for Æ > 1=

p
2), and to Bell (for c1(Æ;W+; D ) <1 for Æ > 1=2), but at

present we cannot specify references.
Section 6 contains some results on the efficient inversion on some finite groups and semi-

groups (again, following [N4]).
In Section 4, we deal with a more general framework, namely with the norm-controlled

functional calculi and the so-called spectral efficiency hulls h(�;A;X) introduced (following
[N4]) in the same section. The links of efficiency hulls with the norm-controlled calculi are
established and a description of these hulls for the measure algebra M(S) on a semigroup S
is given using the horodisc expansions.

The results and the methods employed for weighted convolution algebras are completely
different. In Section 3, following [ENZ], a general method is developed that allows us to
control the inverses in terms of Æ = infM(A) jx̂j for rotation invariant topological Banach al-
gebras A. More precisely, our goal in Section 3 is to give a method for proving the equality
Æ1(A;M) = 0. This method relies on two ideas. First, to estimate kx�1kA, we use the mul-
tipliers mult (DA) of the space DA of derivatives of our algebra A, where D = z d

dz
. The
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second idea is to deduce estimates from the compactness of the embedding A � mult (DA).
In applications, the main point is precisely in the proof of this compactness and in estimat-
ing the rate of decay of relevant best polynomial approximations in the mult (DA) norm.
Following [ENZ], we realize this approach in Section 7 for the Beurling-Sobolev algebras
A = lp(w) of positive spectral radius, r(A) = limnw(n)

1=n > 0, both on Z and Z+.
Historical remarks. As is already mentioned, the prehistory of the ideas presented in

this paper was started with the classical theorems of Wiener-Lévy and Wiener-Pitt-Sreider
quoted above.

The second wave of results, sharpening the Gelfand and Riesz-Dunford functional calculi,
was devoted to functions operating on Fourier transforms, and was mostly due to H. Helson,
J.-P. Kahane, Y. Katznelson, and W. Rudin. The main problem considered and resolved was
to describe functions ' defined on an interval � = [a; b] � R and such that '(Ff) 2 FA
for every f 2 A with Ff(Ĝ) � �, where A = M(G) or A = L1(G). See [HKKR],
[Ru1], [GMG], [K1], [HR] for exhaustive presentations and further references. Nonanalytic
functions operating on certain weighted algebras of Fourier transforms F l1(Z; w) occurred
in the papers of J.-P. Kahane, [K2], and N. Leblanc [L]. However, no quantitative aspects
similar to those of Sections 1–2 were explicitly presented.

The third wave of results related to norm-controlled calculi can be linked with construc-
tive proofs of the Wiener-Lévy theorem on inverses. We mention the proofs by A. Calderon,
presented in [Z], by P. Cohen [C], and by D. Newman [New]. The Calderon approach was
developed by E. Dyn’kin [D].

The problem of norm-controlled inversion (for the Wiener algebra A = l1(Z)) was first
mentioned by J. Stafney in [St], where the existence of a; b;K > 0 was proved such that
supfkf�1kA : kfk 6 K; f̂(T) � [a; b]g = 1. This implies that c1(Æ; A;T) = 1 for some
Æ > 0. The proof, based on Y. Katznelson’s results, does not permit to specify the value of Æ.
Independently, and in a more constructive way, the result was obtained by H. Shapiro [Sh1]
(in response to a question by a physicist G. Ehrling), but also without any concrete value of Æ.
Several remarks were made in Shapiro’s note attributing to various authors certain estimates
for quantities we call the critical constants Æ1(l1(Z+); D ) and Æ1(l

1(Z);T); no precise refer-
ences were given. In fact, the paper [N4] was inspired by Shapiro’s construction. In the paper
of J.-E. Björk [B], a problem related to uniform functional calculi was considered. In our lan-
guage, it is equivalent to an estimate for Æ01(A;M(A)), a microlocal version of Æ1(A;M(A))
studied in Section 4 below. In [B], a criterion was given in terms of another quantity which
can be regarded as a “uniform spectral radius” of the algebra. O. El-Fallah [E] recently gave
an application of Bkörk’s result to the algebras lp(w) with slowly growing w.

In the paper of S. Vinogradov and A. Petrov [VP], a description was given of Banach
spaces A of functions on T satisfying the following property: f 2 A and jf j > Æ on T imply
1=f 2 A.
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We finish these remarks mentioning that the case of higher Bezout equations (the “corona
problems”) related to the constants cn(Æ; A;X) and Æn(A;X) for n > 1 is considered in this
paper very briefly. For their history see [Gar], [N1], as well as [To1] and [To2].

2. How and Why One Can(not) Control the Inverses

Let A be a commutative Banach algebra with unit e, and let X be a Hausdorff topological
space such that A is continuously embedded into C(X), so that X � M(A). We also use
other notation introduced in Section 1. The set of invertible elements of A is denoted by
G(A). We start with simple observations on the critical constant Æ1.

2.1. First observations

We say that A is an algebra of distance controlled resolvent growth if there exists a mono-
tone decreasing function ' : R�+ �! R

�
+ = (0;1) such that

(2.1)


(�e� f)�1



 6 '(dist (�; �(f)); � 2 C n�(f)
for all f 2 A; kfk 6 1. It is easy to see that this estimate implies k(�e � f)�1k 6
1
kfk'(

1
kfkdist (�; �(f))) for all f 2 A and � 2 C n�(f). It is shown in [N4] that a com-

mutative Banach algebra A obeys the distance controlled resolvent growth if and only if
Æ1(A;M(A)) = 0 (the critical constant introduced in Section 1). In fact, c1(Æ; A;M) 6
'(Æ) 6 c1(Æ(2 + Æ)�1; A;M). Similar equivalences hold for the constant Æ1(A;X) related
to a subset X �M(A), and for (Æ � n)-visibility and the “n-resolvent” (�en � f)�1, where
�en = (�1e; : : : ; �ne) 2 An, �k 2 C .

For many examples of function Banach algebras with various behaviour of constants Æn
and cn(Æ), including the classical ones (like A = H1(
)), we refer to [N4], [ENZ].

2.2. Splitting X-symmetric algebras for upper estimates

As before, we consider a commutative unital Banach algebra A continuously embedded
into the space C(X), where X �M(A). Now, we need the following definition, see [N4].

DEFINITION 2.2.1. We say that an algebra A splits at the unit if there exists a subspace
A0 � A such that A = e � C + A0 (a direct sum) and for f = �e + f0, f0 2 A0 we have
kfk = j�j+ kf0k.

An algebra A is said to be X-symmetric if for every f 2 A there exists an element g 2 A

such that kgk 6 kfk and g(x) = f(x) for all x 2 X .

Obviously, the splitting property is satisfied by the algebras A obtained by the standard
adjoining of unity to a Banach algebra A0 without unit. For instance, this is the case for the
group algebra A0 = L1(G) of a nondiscrete LCA group G. Also, it should be mentioned
that the classical symmetry property of Banach algebras corresponds, in our language, to the
M(A)-symmetry. For X 6= M(A), X-symmetry may happen to be a considerably weaker
property. For instance, the algebra A = FM(G) is obviously Ĝ�symmetric: for f = �̂ 2 A
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take g = �̂�, where ��(�) = �(��); � � G. But it is not M-symmetric for a nondiscrete
LCA group G. This latter property is essentially equivalent to the Wiener-Pitt phenomenon.

For X-symmetric algebras, the (Æ � n)-visibility properties are related to each other as
follows.

LEMMA 2.2.2. [N4] For an X-symmetric algebra A, the (Æ�1)-visibility of the spectrum
implies the (

p
Æ � n)-visibility for all n > 1, and even the complete

p
Æ�visibility with

sup
n>1 cn(

p
Æ; A;X) 6 c1(Æ; A;X).

Another feature of X-symmetric algebras is that one can always control the inverses of
elements whose lower bound Æ = infX jf j is sufficiently close to the norm kfk. To show this
we use the following obvious observation.

LEMMA 2.2.3. Let A be an algebra splitting at the unit, and let f = �e + f0, 1=2 < Æ 6
j�j 6 kfk 6 1. Then f is invertible in A, and kf�1k 6 (2Æ � 1)�1.

2.2.4. X-domination for the unit evaluation functional. Let 'e be the following func-
tional evaluating the coefficient of the unit in the standard expansion of an element of a
splitting algebra:

(2.2) 'e(�e+ f0) = �

for �e+ f0 2 A = C �e+A0. Note that 'e is a norm 1 linear functional on A, not necessarily
multiplicative. The following definition will be useful.

DEFINITION 2.2.5. LetA = e�C +A0 be a direct sum decomposition of a Banach algebra
A, and let X � M(A). We say that the unit evaluation functional (2.2) is X-dominated if
j'e(f)j 6 kfkX for every f 2 A, where kfkX = sup

X
jf j.

Standard Hahn-Banach arguments show the following lemma, where, as above, Æx means
the evaluation functional at a point x 2 X: Æx(f) = f(x) for f 2 A.

LEMMA 2.2.6. The following assertions are equivalent.
(i) The functional 'e of (2.2) is X-dominated.
(ii) 'e 2 conv (Æx : x 2 X), where conv (�) stands for the weak-� closed convex hull of

(�).
THEOREM 2.2.7. Let A be a commutative unital Banach algebra and X � M(A) such

that (i) A is X-symmetric; (ii) A splits at the unit; and (iii) 'e is X-dominated.
Then, the spectrum ofA is (Æ�n)-visible for all n > 1 and all Æ satisfying 1=

p
2 < Æ 6 1,

and even completely Æ-visible with cn(Æ; A;X) 6 (2Æ2 � 1)�1.

Proof. Let f = (f1; : : : ; fn) 2 An be such that Æ 6 jf(x)j 6 kfk 6 1 for all x 2 X , and
let gk be elements of A corresponding to the fk as in the definition of X-symmetric algebras.
Then h 2 A, where h =

P
n

k=1 fkgk, and 1=2 < Æ2 6 h(x) 6 khk 6 1 for all x 2 X .
Using condition (iii), Lemma 2.2.6, and an obvious fact that the interval [Æ 2; 1] is a convex
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set, we obtain Æ2 6 'e(h) 6 1. Condition (ii) and Lemma 2.2.3 imply that h is invertible and
kh�1k 6 (2Æ2 � 1)�1. Hence, g = (g1h

�1; : : : ; gnh
�1) 2 An,

P
n

k=1 fk(gkh
�1) = e, and

kgk = (
nX

k=1

kgkh�1k2)1=2 6 kh�1k � kfk 6 (2Æ2 � 1)�1;

as desired.

2.3. A method for lower estimates

The method to get a lower estimate for c1(Æ; A;X) stated in theorem 2.3.1 below is in-
spired by Shapiro’s example [Sh1] mentioned above. Essentially, it reduces to the existence
of elements a 2 A whose normalized powers ak=kakk, 0 6 k 6 p, for a given p are �-
equivalent to the standard basis of an l1�space, whereas asymptotically they tend to zero
faster than a given exponential. We use this method in Section 5; see also [ENZ].

THEOREM 2.3.1. [N4] Let A be a unital commutative Banach algebra, X �M(A), and
given � > 0 let A� be the set of all elements a 2 A such that kakC(X) < � and kak = 1.
Suppose that

(2.3) sup
a2A�







pX

k=0

bka
k






 >
pX

k=0

bk

for all p > 0, � > 0, and bk > 0. Then c1(Æ; A;X) > (2Æ � 1)�1 for all Æ, 1=2 < Æ < 1. In
particular, Æ1(A;X) > 1=2.

The proof consists of setting ft = (1+ t)�1(e� ta) for t > 0 such that (1+ t)�1 > Æ and
1=2 < Æ < 1, then estimating kf�1t k from below and maximizing in t. See [N4], theorem
1.5.1, for details.

3. Estimates of Inverses for Rotation Invariant Algebras

In this Section we describe, following [ENZ], a general method permitting to control
the inverses in terms of Æ = infM(A) jx̂j for rotation invariant topological Banach algebras
A on the circle T. In other words, our goal is to give a method for proving the equality
Æ1(A;M) = 0. As mentioned above, the latter property is equivalent to a distance controlled
estimate for resolvents, k(�e� x)�1k 6 '(dist (�; �(x)).

In short, the main idea how to estimate kx�1k, x 2 A, is to “reduce the smoothness” of
x�1 by applying a first order differential operator D, and then to use the formula Dx�1 =
�x�2Dx. To estimate the norm of the product x�2Dx we use the range norm k � kDA on DA
and the multiplier norm related to DA; namely kDx�1kDA 6 kDxkDAkx�2kmult (DA).

The second idea is to rely on the compactness of the embeddingA � mult (DA) to ensure
a uniform estimate for kx�2kmult (DA). We obtain an estimate for c1(Æ; A) measuring the size
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of a compact subset of mult (DA) in terms of the decreasing rate of the best polynomial
approximations, see Subsection 3.2 below.

In Section 7 we apply this method to Beurling-Sobolev algebras

A = lp(Z; w); lp(Z+; w):

3.1. How to use multipliers

Having in mind applications to the case A = lp(w) (Section 7), from now on we dis-
tinguish between the Banach algebras and the algebras that become a Banach algebra after
equivalent norming. More precisely, a unital Banach algebra is a Banach space A endowed
with a multiplication such that kxyk 6 kxk � kyk for all x; y 2 A, and kek = 1, e stands for
the unit of A. A unital topological Banach algebra A is a Banach space A endowed with a
continuous multiplication so that kxyk 6 Ckxk � kyk for all x; y 2 A and for some constant
C. Clearly, every commutative topological Banach algebra is a Banach algebra with respect
to the operator norm k � k�,

kxk� = supfkxyk : y 2 A; kyk 6 1g:
It is clear that some properties of A, such as, e.g., the property Æ1(A;X) = 0, are renorming
stable. Some others may be greatly affected by such a renorming. For instance, so is the sharp
value of the critical constant Æ1(A;X) if it is positive, or, in the case where Æ1(A;X) = 0, so
is the growth rate of the constants c1(Æ; A;X) as Æ �! 0.

Now, let A be a unital topological Banach algebra of sequences x = (xn) on Z or Z+,
which means that x 7�! xn is a continuous functional for every n, with the convolution � as
an algebra operation, and such that

(i) the set S0 of finitely supported sequences (on Z or Z+, respectively) is a dense subset
of A;

(ii) A is a rotation invariant (homogeneous) space of sequences, that is, if x 2 A then
xt = (xnt

n
)n 2 A and kxtk = kxk for every t 2 T.

Conditions (i) and (ii) guarantee that the rotation t 7�! xt is a norm continuous mapping
from T to A, for every x 2 A. Consequently, the Césaro (Fejér) or Abel-Poisson averages of
the series x �P

k
xkek converge to x for every x 2 A; here ek = (Ækn)n is the standard 0� 1

algebraic basis of S0.
A complex homomorphism ' of A is uniquely determined by its value � = '(e1) on

the generator e1 of the algebra A, and the Gelfand (Fourier) transformation is given by the
formula,

x 7�! x̂(�) = Fx(�) =
X
k

xk�
k;

at least for x 2 S0. Hence, ' 7�! � = '(e1) is a bijection ofM(A) on a compact subset of
C . We identify this subset withM(A). In can be easily seen thatM(A) = A(r�; r+) = fz 2
C : r� 6 jzj 6 r+g, where r+ = limn kenk1=n < 1 and r� = limn ke�nk�1=n > 0. We
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refer to r� = r�(A) as to the lower and the upper spectral radius of A. The normalized case,
where r+ = 1, or r+ = r� = 1 in the case of Z, will be the main one for us.

3.1.1. A Green type norm. The operatorD is defined by Dx = (nxn)n, x 2 A. It maps
A to S, the space of all sequences on Z (respectively, on Z+). On the Gelfand transforms
x̂ =

P
k
xkz

k, the operator D acts as D̂x̂ = (Dx)̂ . This is a formal first order differential
operator, D̂ = z d

dz
. In particular, it obeys the Leibnitz rule for products D̂(fg) = fD̂g+gD̂f ,

at least for “trigonometric polynomials” f; g 2 Ŝ0. Hence, D(x � y) = x � Dy + y � Dx for
every x; y 2 S0. In fact, the same formula works for x 2 S0, y 2 A, and in particular,
Dx�1 = �x�2 � Dx for all x 2 G(A) \ S0.

The range DA is a Banach space with respect to the range norm kDxkDA = kxkA, where
x 2 A, x0 = 0. For convenience reasons, we add the unit e = e0 to DA and will consider
the sum A0 = DA + C �e as the range space of D endowed with the following range norm
k�e+DxkA0 = k�e + xkA, where x 2 A, x0 = 0 and � 2 C . Clearly, the space A0 contains
S0 as a dense subset, and is rotation invariant.

It is shown, see [ENZ], that A � A0 and every element x 2 S0 defines a continuous
convolution operator y 7�! x � y on A0. Hence, one can introduce the convolution multiplier
norm on finitely supported elements x 2 S0 as the operator norm,

kxkmult (A0) = supfkx � ykA0 : y 2 S0; kykA0 6 1g:
By definition, the space mult (A0) of (little) convolution multipliers of A0 is the comple-

tion of S0 with respect to this norm. Clearly, mult (A0) is a unital rotation invariant Banach
algebra.

LEMMA 3.1.2. Let A be a topological Banach algebra satisfying the above conditions
(i)–(ii), and let x 2 G(A) \ G(mult (A0)) such that Æ = min�2M(A) jx̂(�)j > 0. Then

kx�1kA 6 kekAÆ�1 + 2kxkA � kx�2kmult (A0):

3.2. How to use compactness

3.2.1. A multiplier estimate. Lemma 3.1.2 makes evident the following sufficient condi-
tion for (Æ� 1)-visibility of the spectrum: given a topological Banach algebra A of sequences
on Z, or Z+, satisfying conditions (i)–(ii) of Subsection 3.1, and compactly embedded into
mult (A0): A �c mult (A0), then Æ1(A;M(A)) = 0, and, moreover,

c1(Æ; A;M) 6 Æ�1kekA + 2C(KÆ)

for all Æ > 0, where KÆ = A2
Æ
, AÆ = fx 2 A : kxkA 6 1; jx̂(�)j > Æ for all � 2M(A)g and

C(KÆ) is defined by the formula

(3.1) C(KÆ) = supf


x�1



mult (A0)
: x 2 KÆg <1:

It remains to estimate the constant C(KÆ) of formula (3.1).
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3.2.2. Approximate characteristics of compact sets. We use the standard classification
of compact sets in terms of the best polynomial approximations. Let B be a Banach space
and let Ln � B be subspaces of B such that Ln � Ln+1, dimLn < 1 for n > 1, and
clos (

S
n
Ln) = B. Further, let K � B and

(3.2) �n(K) = �n(K;B) = supfdist (x; Ln) : x 2 Kg
be the best approximations of K by elements of Ln. It is well known that a bounded subset
K � B is relatively compact if and only if limn �n(K) = 0. We apply this criterion to
the space B = mult (A0) and to subspaces Ln = Pn of all trigonometric polynomials of
degree less than or equal to n. Then �n(K) of (3.2) are the best polynomial approximations
of elements of K. The axioms (i) and (ii) of Subsection 3.1 and the definition of mult (A0)
imply that limn k�nx � xkB = 0 for all x 2 B, where �nx stands for the Fejer mean of a
sequence x 2 B. Therefore, we can use the above compactness criterion for B = mult (A0).

Now, our aim is to specify constantsC(KÆ) from formula (3.1) in terms of �n(KÆ), n > 1.

3.2.3. Calderon-Cohen-Dyn’kin “constructive inversions”. As mentioned in the be-
ginning of Section 3, the use of compactness for estimates of inverses was started with various
“constructive proofs” of the classical Wiener-Lévy inversion theorem for absolutely conver-
gent Fourier series. Here “constructive” means “without using the Gelfand theory of maximal
ideals”. The basic A. Calderon proof, [Z] Chapter VI, theorem (5.2), exploits the Cauchy
formula, and, thus, is applicable not only to inverses x�1, but also to compositions ' Æ x.
P. Cohen [C] used the same techniques for inverses and for higher Bezout equations. In [C], a
possibility to estimate the norms kx�1kW in terms of Æ = infT jFxj and certain characteristics
similar to the quantities �n of (3.2) was mentioned explicitly; here and below the symbol Fx
is used for the Gelfand (discrete Fourier) transform, keeping the notation x̂ for the classical
Fourier coefficients. In [D], E. Dyn’kin applied Calderon’s method to the Beurling algebras
A = l1(Z; w) to get estimates for the inverses kx�1kA in terms of the same characteristics
�n(fxg). D. Newman [New] gave a completely elementary proof of the Wiener-Lévy theorem
also based on polynomial approximations.

All authors mentioned above obtained some estimates for the inverses kx�1kA assuming,
or implicitly assuming, that x runs over some compact subsetK � A. The approach of [ENZ]
is different: we prove the compactness of the set AÆ = fx 2 A : kxkA 6 1, jFxj > Æg in
the algebra mult (A0) and use this compactness for obtaining a uniform estimate of kx�1kA
for x 2 AÆ. The next theorem is proved in [ENZ] using the Dyn’kin method from [D]. The
latter paper contains a similar result for the special case of the algebra B = l1(Z; w) with
w(n) = w(�n) and r� = r+ = limnw(n)

1=n = 1.

THEOREM 3.2.4. Let B be a convolution Banach algebra on Z+, or on Z, satisfying
conditions (i) and (ii) of Subsection 3.1, with the spectral radius r+(respectively spectral
radii r� 6 r+). Let K be a relatively compact subset of BÆ = fx 2 B : kxkB 6 1, and
Æ 6 jFx(�)j for � 2 M(B)g and let � = �K be the distribution function of the sequence
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(�n(K))n>0:
�K(t) = card fn : n > 1; �n�1(K) > tg; t > 0:

Then

kx�1kB 6M(Æ; �) =
16

Æ

X
j>0

(r�j+ kejkB + rj�ke�jkB)e�Æj=17�(Æ=4)

for every x 2 K.

For the case of an algebra on Z satisfying r� = r+ = 1, the proof starts by using the
Calderon approach: we choose a polynomial Fy 2 Pn, n = �(Æ=4) with kx � ykB 6 Æ=4
and write the Cauchy formula

x�1 = (2�i)�1
Z
jzj=Æ=2

(y + ze)�1(ze + (y � x))�1 dz;

where (y+ze) 2 G(B) since jFy+zj > Æ=4 on the spaceM(B). To estimate k(y+ze)�1kB ,
we use Dyn’kin’s method involving the S. Bernstein inequality, see [ENZ] for details.

Now, having in mind applications to the Beurling-Sobolev algebras in Section 7, we com-
bine 3.2.1 and theorem 3.2.4.

THEOREM 3.2.5. Let A be a convolution topological Banach algebra on Z or on Z+,
satisfying conditions (i)–(ii) of Subsection 3.1 and compactly embedded into B = mult (A 0),
that is A �c B = mult (A0). Let constants C and E be defined by the inequalities kx� ykA 6
CkxkAkykA and kxkB 6 EkxkA for all x; y 2 A, and let �n(A0; B) be the best polynomial
approximations of the unit ball A0 � A, and �0 = �A0 be their distribution function.

Then Æ1(A;M(A)) = 0, and c1(Æ; A;M(A)) 6 kekA
Æ

+M(Æ) for all Æ > 0, where

M(Æ) =
25E2

Æ2

X
j>0

(r�j+ kejkB + r
j

�ke�jkB)e�Æ
2j=17E2�0(Æ2=4C):

4. Spectral Hulls and Norm-Controlled Functional Calculi

In the three preceding sections, we considered the problem of uniform upper bounds for
inverses when staying on a given subset X � M of the maximal ideal space M. Following
[N4], now we treat a more general form of the same problem defining and studying the so-
called X-spectral efficiency hull h(�;X) of a given set � � C . In this language, the uniform
boundedness of inverses is equivalent to the property 0 62 h(�Æ; X), where �Æ stands for the
annulus fz 2 C : Æ 6 jzj 6 1g. Yet another reason to study the hulls h(�;X) is that
h(�;X) is the minimal set satisfying the “uniform calculus property”. The latter means that
for every open set 
 � C containing h(�;X) there exists a constant k = k(
; X) such that
kf(a)k 6 kkfk
 for every f 2 Hol(
) and for every a 2 A with �(a) � � and kak 6 1.
Similar uniformly bounded calculi were implicitly involved in classical studies of functions
operating on Fourier algebras, see [HKKR], [Ru1].
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The main results of this section are theorems 4.1.5 and 4.2.2. Examples of spectral hulls
are gathered in subsection 4.3.

4.1. Spectral hulls and resolvent majorants

Let A be a unital Banach algebra, and let X �M(A).

DEFINITION 4.1.1. Let � � D . We set A(�;X) = fa 2 A : kak 6 1; â(X) � �g,
C(�; �;X) = C(�; �;A;X) = supfk(�e� a)�1k : a 2 A(�;X)g for � 2 C , where we take
k(�e� a)�1k =1 for � 2 �(a). Let also h(�;X) = h(�;A;X) = f� 2 C : C(�; �;X) =
1g.

The set h(�;X) is called the X-spectral hull of �; the full spectral hull of � is h(�) =
h(�;A;M(A)). The complement �(�;X) = C nh(�;X) is called the norm-controlled (or
efficient) resolvent complement of �. For a positive constant k > 0, we also consider the sets
h(�; k;X) = f� 2 C : C(�; �) > kg and �(�; k;X) = C nh(�; k;X). For X = M(A)
we simplify the notation in a natural way: A(�) = A(�;M(A)), h(�; k) = h(�; k;M(A)),
�(�; k) = �(�; k;M(A)).

4.1.2. First properties. It is clear that the definition of the (Æ � 1)-visibility (Section 1)
is a special case of those of the efficient resolvent complement. Indeed, let �Æ be an annulus,
�Æ = fz 2 C : Æ 6 jzj 6 1g. Then the spectrum of A is (Æ � 1)-visible if and only if
0 2 �(�Æ;X). Moreover, c1(Æ; A;X) = C(0; �Æ;A;X), 0 < Æ 6 1.

Note that n-variables counterparts of A(�;X), C(�; �;X), etc., could be considered as
well, but we restrict ourselves to the case n = 1.

The following property of C(�; �;A;X) and h(�; k;A;X) is a more or less straightfor-
ward consequence of the definitions, see [N4] for the proofs: h(�;X) = � for every closed
� � D if and only if Æ1(A;X) = 0, where Æ1(A;X) is the critical constant for the pair (A;X).

4.1.3. Microlocalization. It is clear that lower estimates for spectral hulls and resolvent
majorants must depend on the geometry of the subset � � D under consideration. For in-
stance, A(�;X) = fconstg for every subset X �M(A) equipped with an analytic structure
and for every � with int (�) = ;, see 4.3.1 for examples. Having in mind this last constraint,
we restrict ourselves to the case, where � = clos (int (�)).

In this case, the behaviour of C(�; �;X) depends on the following microlocal version of
the critical constants and the inversion majorants.

Let A be a unital Banach algebra, X � M(A), and let 0 < Æ 6 1. A microlocal upper
bound (majorant) for inverses is defined by

c01(Æ; A;X) = inf
�>0

(supfkf�1k : kfk 6 1; f̂(X) � �Æ; diam f̂(X) < �g);
and the microlocal critical constant is defined by Æ01(A;X) = inffÆ : c01(Æ; A;X) < 1g;
here, as before, �Æ = fz 2 C : Æ 6 jzj 6 1g.

Properties of these microlocal majorants are similar to those of the global ones, that is, to
the properties of Æ1(A;X) and c1(Æ; A;X) defined in Sections 1 and 2; see [N4] for details.
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4.1.4. Horodisc expansions. Denote D(z; r) = f� 2 C : j� � zj < rg, D(z; r) = f� 2
C : j� � zj 6 rg. In hyperbolic geometry of the unit disc D , the discs D(z; 1 � jzj), z 2 D

are called horodiscs . Given a closed set � � D , we call the set

hor (�) =
[
z2�

(D(z; 1� jzj))

the horodisc expansion of �. In order to apply the microlocal version of the critical constants
we need one more notation, namely,

hor (�; Æ) =
[
z2�

(D(z;
Æ

1� Æ
(1� jzj))):

THEOREM 4.1.5. Let A be a unital splitting Banach algebra, X be a subset of M(A)
dominating 'e, and let � = clos (int (�)) � D . Then

(i) hor (�; Æ01) � h(�;A;X) � hor (�; 1=2) = hor (�);
(ii) if Æ01(A;X) = 1=2, then h(�;A;X) = hor (�);
(iii) if Æ01(A;X) = 1=2 and c01(Æ; A;X) = (2Æ � 1)�1 (see Section 5 for examples), then

h(�;A;X) = hor (�) and C(�; �;X) = 1=dist (�; hor (�)).

Observe that under the splitting condition we always have Æ01(A;X) 6 Æ1(A;X) 6 1=2
and hor (�; Æ01) � hor (�; 1=2) = hor (�). The equality hor (�; Æ01) = hor (�) holds for all
� � D if and only if Æ01(A;X) = 1=2. For examples of computations and for pictures of the
horodisc expansions of various sets see [N4].

4.2. Spectral hulls and norm-controlled calculi

The Gelfand theory guarantees the existence of a holomorphic calculus on the spectrum
of every element of a Banach algebra A. Namely, if a 2 A, the function of a

f(a) =
1

2�i

Z
@


f(�)(�e� a)�1 d�

is well defined for every f 2 Hol(
) and every open neighbourhood of the spectrum 
 �
�(a) (the Riesz-Dunford calculus). As is shown in Sections 1, 2, and 5, this does not guar-
antee any estimate of the norm kf(a)k, even for the simplest functions like f(z) = 1=z, and
even if we add the normalizing condition kak 6 1 to the spectral inclusion �(a) � 
.

The true question is the following: what are the relations between the spectrum �(a) (or
a visible part of the spectrum â(X)) and a domain 
 that guarantee the uniform continuity of
the 
-calculus? In other words, does there exist a compact set K � 
 and a constant c > 0
such that kf(a)k 6 c � supK jf j for every f 2 Hol(
) and every a 2 A(�;X) = fa 2 A :
â(X) � �, kak 6 1g? We formalize this setting in the following definition, see [N4] for
more details.
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DEFINITION 4.2.1. Let A and X be as above, and let � = � � D . We say that an open
set 
 � C X-dominates the set �, or is a norm-controlled calculus domain for �, if � � 

and the calculi f 7�! f(a), f 2 Hol(
) are well defined and uniformly continuous for all
a 2 A(�;X) = fa 2 A : â(X) � �, kak 6 1g.

In fact, this property is equivalent to the existence of a compact set K � 
 and a constant
c(K) = c(K;X) > 0 such that

kf(a)k 6 c(K)kfkK
for every function f 2 Hol(
) and every a 2 A(�;X). Here kfkK = maxfjf(z)j : z 2 Kg.

Obviously, the definition of (Æ � 1)-visibility, as well as the definition of the distance
controlled resolvent growth, see Subsection 1.1, are special cases of the latter concept. The
following theorem shows that X-dominating domains for a given set � can be described in
terms of the spectral hulls h(�;X).

THEOREM 4.2.2. Let A be a unital Banach algebra, X � M(A), and let � � D and

 � C be a closed and an open set, respectively. The following assertions are equivalent.

(i) 
 is an X-dominating domain for �.
(ii) 
 � h(�;X).
(iii) There exists k > 0 such that 
 � h(�; k;X).

4.3. Examples of spectral hulls

Here we describe examples of three different types. As above, we refer to [N4] for details.
The first type pertains to algebras A whose hull operation is trivial in the sense that

h(�;M(A)) = � for every � = � � D ; see 4.3.5 below.
For algebras A of the second type, the same operation � 7�! h(�;M(A)) is also trivial,

but in a different way, namely, h(�;M(A)) = D for every nonempty � = � � D , even for
singletons; see 4.3.4 below.

For the middle type algebras the full spectral hull h(�;M(A)) essentially depends on �
but is different from it. For instance, this is the case for the measure algebras A =M(S) on
semigroups considered in Section 5 below. In this case we can compute completely the full
spectral hulls h(�; Ŝb) and the resolvent majorants C(�; �; Ŝb), see theorem 4.3.2 below.

4.3.1. Spectral hulls for measure algebras on semigroups. Anticipating the systematic
study of measure algebras (see Section 5 below), here we apply the above theory to compute
relevant spectral hulls. LetM(S) be the convolution algebra of measures on a sub-semigroup
of a locally compact abelian group G, and Ŝb be the set of all bounded semi-characters on S
which we consider as the visible part of the spectrum of M(S) (see Section 5 for details).
The corresponding Gelfand (Fourier-Laplace) transformation is denoted by F . For example,
the analytic Wiener algebra A = FM(Z+) = F l1(Z+) = W+ corresponds to S = Z+

and Ŝb = M(A) = D , with f 7�! f(z), z 2 D , as the Gelfand transformation. Since a
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nonconstant holomorphic function is an open mapping, the sets A(�) = A(�; D ) = ff 2
W+ : kfk 6 1; f(D ) � �g and A(�0), where �0 = clos (int (�)), differ from each other by
constant functions taking values in �n� 0. Hence, we can restrict ourselves to the case, where
� = �0. Supposing � = �0, we can easily deduce from theorem 4.1.5 a description of h(�; Ŝb)
for M(S), as well as for all subalgebras of M(S) considered in Section 5.

THEOREM 4.3.2. [N4] Let A = FM(S), or let A be any algebra A � M(S) sat-
isfying the conditions of theorem 4.3.4 below. Let � be a closed subset of D such that
� = clos (int (�)). Then

(i) h(�; Ŝb) = hor (�);
(ii) C(�; �; Ŝb) = 1=dist (�; hor (�)) for � 2 C ;
(iii) An open set 
 is a norm-controlled calculus domain for � if and only if 
 � hor (�).

Indeed, assertion (iii) is a straightforward consequence of (i) and theorem 4.2.2. Asser-
tions (i) and (ii) are special cases of theorem 4.1.5, because Æ01(A; Ŝb) = 1=2 and 'e(f) =

f(0) 2 f̂(Ŝb) for every f 2 M(S).

4.3.3. Full spectral hulls equal to D . Here we describe, following [N4], a class of “bad”
Banach algebras for which the full spectral hull of every spectrum is equal to D . To this end,
we need a bit of model operators. All properties claimed below can be found in [N1].

Let � be a singular inner function in D , and let

� = �� = exp(

Z
T

z + �

z � �
d�(�)); z 2 D ;

be its canonical integral representation, where � is a positive measure on T singular with
respect to the Lebesgue measure m. Further, let K� = H2	�H2 be the orthogonal comple-
ment of the corresponding z-invariant subspace �H 2 of the Hardy space H2. The compres-
sion

f 7�!M�f = P�zf; f 2 K�;

of the multiplication operator is called a model operator; P� stands for the orthogonal pro-
jection to K�. The Sz.-Nagy-Foias model theory tells that every completely non unitary
contraction T with rank(1� T �T ) = 1 and �(T ) 6= D is unitarily equivalent to an operator
M�, see [SzNF].

Now, we define the algebra A = A� as the norm closure of polynomials in M�. It
is an exercise to show that always M(A�) = �(M�) = supp (�) � T and kM�k = 1.
It is worth mentioning that, for � = ��, where � = Æ1, there exists a unitary operator
U : K� �! L2(0; 1) such that the algebra UA�U

�1 is the norm closure of polynomials in
the integration operator Jf(x) =

R
x

0
f(t) dt, x 2 (0; 1), on the space L2(0; 1).

THEOREM 4.3.4. [N4] Let A = A� be the above Banach algebra corresponding to a
singular inner function � = �� with the representing measure � whose closed support is a
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set of zero Lebesgue measure, m(supp (�)) = 0. Then for every closed subset � � D , � 6= ;,
we have h(�;M(A)) = D .

4.3.5. Spectrally closed sets. It is natural to call a subset � � C (A;X)-spectrally closed
(or A-spectrally closed in the case where X =M(A)) if h(�;A;X) = �. Property 4.1.2 tells
us that every closed subset � � D is (A;X)-closed if and only if Æ1(A;X) = 0. In Section
7 we give an account of known results about weighted Beurling-Sobolev algebras satisfying
this property.

Part II. Convolution Algebras

5. Unweighted Convolution Algebras on Groups and Semigroups

Let G be an LCA group and M(G) be the convolution algebra of all complex Borel
measures on G endowed with the standard variation norm k�k = Var (�). The Fourier
transforms F� = �̂,

F�(
) = �̂(
) =

Z
G

(�x; 
) d�(x); 
 2 Ĝ;

form an algebra of functions on the dual group Ĝ. We denote it by FM(G) and endow it
with the range norm kF�k = k�k. Clearly, F(� � �) = (F�) � (F�) for all �; � 2 M(G),
and so the Banach algebras M(G) and FM(G) are isometrically isomorphic. The term “the
measure algebra of G” will be referred to the both.

Since the mapping � 7�! �̂(
) is a complex homeomorphism of M(G), we can injec-
tively embed Ĝ intoM(M(G)), and regard Ĝ as the visible spectrum of M(G) in the sense
of the Introduction. In particular, clos �̂(Ĝ) � �(�) for any � 2 M(G). The Wiener-Pitt-
Sreider theorem implies (see the Introduction) thatM(M(G)) = clos Ĝ if and only if G is a
discrete group; in fact, in this case we simply haveM(M(G)) = Ĝ.

However, even in the latter case, the problem of the norm-controlled inversion, as de-
scribed in previous sections, is still of interest. Moreover, from the quantitative point of
view, we cannot distinguish any advantage of discrete groups, for which the spectrum Ĝ =
M(M(G)) is completely visible (in the sense of Definition 1.2.1), as compared with the gen-
eral LCA groups, for which X = Ĝ 6= M(M(G)), and the spectrum is even 1-invisible.
This is an essential distinction between the concepts of n-visibility (without any norm con-
trol) and (Æ � n)-visibility. Speaking informally, the 1-visibility of M(M(G)) for discrete
groups, guaranteed by the classical Wiener-Lévy theorem, is illusory because it does not
endure quantitative specifications by (Æ � 1)-estimates of inverses.
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5.1. An upper estimate for the measure algebra on a group

The constants cn(Æ;M(G); Ĝ), defined in 1.2.3, can be estimated by using theorem 2.2.7,
because the algebra M(G) is Ĝ-symmetric in the sense of 2.2.1. The main condition (iii)
of theorem 2.2.7 can be checked with the help of lemma 2.2.6. Namely, one can prove that
'e 2 conv (Æ
 : 
 2 Ĝ) by means of “triangular” positive semidefinite kernels k� on G, such
that k̂�(
) > 0 for 
 2 Ĝ, 0 6 k�(x) 6 1 = k�(0) for x 2 G, and k�(x) = 0 outside of a
neighborhood V� of the origin such that

T
�
V� = f0g. Indeed, setting

'�(�) =

Z
Ĝ

k̂�(
)�̂(
) dmĜ
(
);

we have '� 2 conv (Æ
 : 
 2 Ĝ) and lim� '�(�) = lim�

R
G
k� d� = �(f0g) = 'e(�) for all

� 2 M(G). This proves the following theorem.

THEOREM 5.1.1. For every LCA groupG, the spectrum ofM(G) is completely Æ-visible
for every Æ satisfying 1p

2
< Æ 6 1, and, consequently, Æn(M(G); Ĝ) 6 1p

2
for all n > 1.

Moreover,

(5.1) cn(Æ;M(G); bG) 6
1

2Æ2 � 1

for 1=
p
2 < Æ 6 1 and for all n > 1.

5.2. The measure algebra on a semigroup

Here we consider the convolution measure algebras M(S) on semigroups S. Since the
language of the semigroup theory is not canonically fixed, we define exactly which objects
we are dealing with. For general facts of harmonic analysis on semigroups we refer to [T].

5.2.1. Definitions. By a semigroup S we mean the following.
(i) S is a Borel subset of a LCA group G such that x; y 2 S ) x + y 2 S,
(ii) 0 2 S.
A bounded character (also called semicharacter) on S is a bounded continuous function


 : S �! C such that 
(0) = 1 and 
(x + y) = 
(x)
(y) for all x; y 2 S. It is clear that
every such function is bounded by 1: j
(x)j 6 1, x 2 S. The set of all bounded characters
of S is denoted by Ŝb. Obviously, Ĝ � Ŝb, in the sense that the restriction 
jS of a character

 2 Ĝ is a bounded character of S. In what follows, we assume that the following separation
property holds.

(iii) For every x 2 S, x 6= 0, there exists a bounded character 
 2 Ŝb such that j
(x)j < 1.

In particular, S \ (�S) = f0g if a semigroup S satisfies condition (iii). Let M(S) =
f� 2 M(G) : �j(GnS) � 0g be the subspace of M(G) consisting of all measures supported
by S. An immediate verification shows that M(S) is a (closed) subalgebra of M(G). Now,
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we define the Fourier-Laplace transformation on Ŝb setting L�(
) = �̂(
) =
R
S

(x) d�(x)

for � 2 M(S) and 
 2 Ŝb. Clearly, the functional

(5.2) � 7�! L�(
); � 2 M(S);

is a norm continuous homomorphism of the algebra M(S) for every 
 2 Ŝb. Moreover,
L�(
) = F�(�
) for all 
 2 Ĝ. Hence, it is natural to consider the space of bounded
characters Ŝb as the visible part ofM(M(S)), and write Ŝb �M(M(S)).

The following theorem can be proved in a similar way to 5.1.1. However, the result is two
times better as compared with the algebras M(G).

THEOREM 5.2.2. Let S be a semigroup satisfying conditions (i)–(iii). Then,

(5.3) Æ1(M(S); bSb) 6 1

2
;

and

(5.4) c1(Æ;M(S); bSb) 6 1

2Æ � 1

for all Æ, 1
2
< Æ 6 1.

5.3. Examples and comments

5.3.1. Symmetric and analytic Wiener algebras. Let G = Z be the additive group of
integers, and let S = Z+ = fn 2 Z : n > 0g. Then M(Z) = l1(Z), M(Z+) = l1(Z+),
and W = FM(Z) = f�̂ =

P
n2Z �(n)�

n : � 2 l1(Z)g is the Wiener algebra of absolutely
converging Fourier series on the circle group Ẑ = T = f� 2 C : j�j = 1g. The bounded
characters of Z+ fill in the closed unit disc Ŝb = D = fz 2 C : jzj 6 1g. The corresponding
Fourier-Laplace transformation is � 7�! �̂(z) =

P
n>0 �(n)z

n, and W+ = LM(Z+) =

f�̂ =
P

n>0 �(n)z
n : � 2 l1(Z+)g is the analytic Wiener algebra on D . Preceding theorems

tell that kf�1kW 6 (2Æ2 � 1)�1 if f 2 W and 1=
p
2 < Æ 6 jf(�)j 6 kfkW 6 1 for j�j = 1,

and kf�1k 6 (2Æ � 1)�1 if f 2 W+ and 1=
p
2 < Æ 6 jf(z)j 6 kfkW+

6 1 for jzj 6 1.

5.3.2. Several variables, continuous versions, and cones in Z
N and R

N . The same
estimates of inverses as in 5.3.1 hold for the multivariate Wiener algebra on the torus TN ,

W = FM(ZN) = f�̂ =
X
n2ZN

�(n)�n : � 2 l1(ZN)g;

for the analytic Wiener algebra on the polydisc D
N

,

W+ = LM(ZN

+) = f�̂ =
X
n2ZN

+

�(n)zn : � 2 l1(ZN

+)g;
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and for continuous versions of the Wiener algebras. The latter correspond to G = R, S =
R+ = fx 2 R : x > 0g, and—in several variables—to G = R

N , S = R
N

+ . Here Ĝ = R,
Ŝb = C + = fz 2 C : Im (z) > 0g - the closed upper half-plane, and, for several variables,

Ĝ = R
N , Ŝb = C

N

+ .
Instead of the cones RN

+ � R
N and Z

N

+ = R
N

+ \ Z
N , we may consider an arbitrary

subsemigroup S of RN containing 0 and such that Snf0g is contained in an open halfspace
(this requirement guarantees the separation property (iii) of Subsection 5.2.1). Usually, S is
a convex cone satisfying the latter property, or, in its discrete version, the intersection of such
a cone with ZN . For the continuous version, the semicharacters are x 7�! ei(x�z) with z 2 Ŝb,
where Ŝb = fz 2 C

N : Im (x � z) > 0 for all x 2 Sg and x � z =
P

N

k=1 xkzk. The Fourier-
Laplace transformation is again the classical one. For instance, taking S = f(x1; x2) 2 R

2 :

x1 > 0; �kx1 6 x2 6 kx1g, where k > 0, we have Ŝb = f(z1; z2) 2 C
2 : kjIm (z2)j 6

Im (z1)g.
Another example is the halfspace S = f(x1; x2) 2 R

2 : x1 > 0g [ f0g, with the corre-
sponding dual set of characters Ŝb = f(z1; z2) 2 C

2 : =(z2) = 0; Im (z1) > 0g = C + � R.

5.4. Some subalgebras of M(G) and M(S)

Here we briefly consider two classical subalgebras of M(G) (or M(S)), namely, the
algebras of absolutely continuous, respectively, discrete measures on G (or on S).

5.4.1. The group algebra L1(G). Let G be an LCA group, and L1(G) the convolution
group algebra on G, which becomes a unital algebra if we adjoin the Dirac point mass at the
origin e = Æ0 (if G is not discrete). Since the Riemann-Lebesgue lemma implies that 'e(�) =
� = lim
�!1 �̂(
) for � = �e+ fdm 2 (L1(G) + C �e), we can directly apply lemma 2.2.3
and obtain the following improvement of theorem 5.1.1: for any nondiscrete LCA group G,
one has Æ1(L1(G) + C �e; Ĝ) 6 1=2; moreover, c1(Æ; L1(G) + C �e; Ĝ) 6 (2Æ � 1)�1 for all
1=2 < Æ 6 1. (For n > 2 we still have estimates (5.1)). In Subsection 5.5 we show that this
new estimate for L1(G) + C �e is sharp.

5.4.2. The algebra of almost periodic functions FMd(G), and the algebra of Dirich-
let series LM d(S). LetMd(G) be the algebra of discrete measures on an LCA group G, and
Md(S) be its subalgebra of measures supported by a subsemigroup S satisfying hypotheses
(i)–(iii) of Subsection 5.2.1.

The algebra FM d(G) of Fourier transforms of discrete measures is the algebra of almost
periodic functions with absolutely convergent Fourier series. Theorem 5.1.1 works for this
algebra too (the visible spectrum is, of course, X = Ĝ). As for the entire algebra M(G),
we will see in Subsection 5.5 below that Æ1(FMd(G); Ĝ) > 1=2. It should be mentioned
that, as before, impossibility of the norm control of inverses for small Æ, i.e., the fact that
c1(Æ;Md(G); Ĝ) = 1 for 0 < Æ 6 1=2, is not related to the evident fact that the spectrum
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M(Md(G)) = (Ĝ)� (the Bohr compactum) is much larger than X = Ĝ. Indeed, we show
that even staying on the Bohr compactum we still have Æ1(Md(G); (Ĝ)�) > 1=2, see below.

Similarly, FM d(S) is the algebra of absolutely convergent Dirichlet series

f(
) =
X
x2S

�(fxg)(x; 
); 
 2 Ŝb

with
P

x2S j�(fxg)j < 1. The case of the classical Dirichlet series corresponds to the case
S = R+ , Ŝb = fz 2 C : Re(z) > 0g with the pairing (x; z) 7�! e�zx. Like Md(G), the
algebra Md(S) is an inversion stable subalgebra of M(S). Hence, Theorem 5.2.2 is still
valid for this algebra as well.

5.5. A lower estimate for the measure algebras

In this section, we show how to get a common lower estimate of c1(Æ; A;X) for the
measure algebras of groups and semigroups, and for their subalgebras considered above. In
particular, we show that the critical constant Æ1 is greater than or equal to 1

2
for every infinite

LCA group and for the most part of semigroups.
In fact, we dispose two approaches to lower estimates. The first one is based directly on

the existence and properties of measures carried by independent Cantor sets; in what follows
a special kind of such measures (Sreider measures) is used. The corresponding theory is
surely one of the most subtle chapters of measure algebra theory, see [GRS], [Ru1], [GMG].
The second method is inspired by H. Shapiro’s example [Sh1]. In our setting, it depends on
some improvements of the technique of exponentials norm behaviour keit�kM(G) for t > 0.
This technique is well known to be the ground of the theory of functions operating on an
algebra, see [Ru1], [GMG]. The first way is faster, and, following [N4], we use it in this
section. For the second one, more explicit, we refer to [ENZ] and [Sh2].

We start by recalling some classical facts on measure algebras.

5.5.1. Sreider measures. Let G be a nondiscrete LCA group. It is known that there
exists a positive measure � 2 M(G) such that �̂(Ĝ) � [�1; 1] and �̂(M) = D , k�k = 1;
see Sreider [Sr] for G = R, and [Ru1], Theorem 5.3.4, for the general case and history. We
call such �’s Sreider measures. Moreover, it is known that there exist continuous Sreider
measures � such that the convolution powers and their translates, �k, Æx ��k, are all mutually
singular, see [Ru1], [GMG]. It is worth mentioning that 0 2 �̂(Ĝ) for all known examples of
such measures.

5.5.2. Bohr compactification. For an LCA group G, we denote by Ĝd the dual group
Ĝ endowed with the discrete topology, and set G = (Ĝd)̂ . The compact group G is called
the Bohr compactification of G; in fact, G is a dense subset of G, and G = M(M(Ĝd)) =

M(Md(Ĝ)).
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5.5.3. How to get lower estimates on groups. Here we explain a method to prove lower
estimates for critical constants and norm-controlling constants, making use of Sreider mea-
sures and Bohr compactification. One can call the method “a walk to the Bohr compactum”.
In particular, we get the needed estimates for all three algebras on groups we considered
above, namely, for M(G), L1(G) + C � Æ0, and Md(G).

The method consists of the following steps (see [N4] for more details):
1) staying on an infinite group G, we lift ourselves up to the Bohr group G � G;
2) being nondiscrete, G carries a Sreider measure, say �, whose polynomials give the

required lower estimate, see Lemma 5.5.4 below;
3) using almost periodic approximations of F�, we obtain the same lower estimate on

G (via the classical Bochner criterion for the membership in FM(G), see [Ru1], Theorem
1.9.1).

Of course, for a nondiscrete group G, steps 1) and 3) are not necessary. To accomplish
step 3) for general G, we need a kind of a strengthened weak topology, precisely, a version
of Beurling’s narrow topology. Namely, we say that a net (�i)i2I � M(G) is Ĝ-convergent
to a measure � 2 M(G) if lim

i2Ik�ik 6 k�k and limi2I �̂i(
) = �̂(
) for 
 2 Ĝ. A set
A �M(G) is said to be Ĝ-dense in a set B �M(G) if every � 2 B is a Ĝ-limit of a net of
measures belonging to A.

The following lemma is a straightforward consequence of the spectral mapping theorem.

LEMMA 5.5.4. Let � be a Sreider measure on a nondiscrete LCA group G, and let � =
Æe+ (1� Æ)�2, where 1=2 < Æ 6 1, and e = Æ0 stands for the unit of M(G). Then k�k = 1,
�̂(Ĝ) � [Æ; 1] and k��1k = (2Æ � 1)�1.

THEOREM 5.5.5. Let G be an infinite LCA group, and let A be a unital subalgebra of
M(G) (not necessarily closed) satisfying the following conditions: (i) A is Ĝ-symmetric;
(ii) A is Ĝ-dense in M(G). Further, given a number Æ, 1=2 < Æ 6 1, let A([Æ; 1]) = f� 2
A : k�k 6 1; �̂(Ĝ) � [Æ; 1]g. Then

sup
�2A([Æ;1])

k��1k > (2Æ � 1)�1:

In particular, Æ1(A; Ĝ) > 1=2, and c1(Æ; A; Ĝ) > (2Æ � 1)�1 for 1
2
< Æ 6 1.

The algebras A =M(G), A = L1(G)+ C � e, and A =Md(G) satisfy conditions (i) and
(ii), and hence the conclusions hold for these algebras.

5.5.6. How to get a lower estimate on semigroups. Here we describe a semigroup
counterpart of theorem 5.5.5 by using the same method of moving to the Bohr compactum.
However, the construction of measures giving the maximum to k��1k when inf j�̂j is fixed
is necessarily different. Indeed, the previous construction is based on the Ĝ� symmetry of
M(G) and on positive semidefiniteness of the corresponding Fourier transforms. Both rea-
sons fail for semigroups. Instead, we are using a more complicated, but general construction
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of theorem 2.3.1. By the way, this gives another proof to theorem 5.5.5; namely, theorem
2.3.1 and lemma 5.5.7 below imply 5.5.5.

In order to realize the technique of narrow approximations on a semigroup instead of the
entire group, we restrict ourselves to a class of semigroups S described in Subsection 5.2.1.
This class contains all frequently used semigroups, in particular, all examples of Subsection
5.3 above.

Until the end of this Section, we denote by A a subalgebra of M(G), and by A a subal-
gebra of M(S).

LEMMA 5.5.7. Let G be an infinite LCA group, and let A be a subalgebra of M(G)

which is Ĝ�symmetric and Ĝ�dense in M(G) (but not necessarily closed and/or unital).
Then, A satisfies (2.3) with X = Ĝ.

Now, we describe a class of semigroups S and a class of subalgebras A � M(S) where
the method based on theorem 2.3.1 works; see [N4] for more details.

5.5.8. Absorbing semigroups and S-subalgebras. Let S be a semigroup embedded into
an LCA group G, S � G, and satisfying hypotheses (i)–(iii) of Subsection 5.5.1. We say that
G satisfies the absorbtion condition if the following is true.

(iv) For every compact set K � G there exists an element x 2 G such that x+K � S.
If S is absorbing, there exists an element x 2 S such that x+K � S (consider K [f0g),

and, therefore, (iv) implies that S generates G in the senseG = S�S. On the other hand, if S
is generating and Snf0g is open, or S contains an open generating part, then S is absorbing.
For instance, this is the case for all examples of Subsection 5.3.

Now, we describe the class of subalgebras of M(S) we are working with. Namely, let S
be a semigroup, S � G. We say that A is an S-subalgebra of M(S) if A is a subalgebra
of M(S) containing a “small” subalgebra of the form PSA+ C �e, where A �M(G) stands
for a subalgebra of M(G) verifying the following conditions (compare with the conditions
of theorem 5.5.5):

(i) A is Ĝ�symmetric;
(ii) A is Ĝ�dense in M(G);
(iii) A is S-invariant, that is, Æx � A � A for x 2 S;
(iv) Ĝ is a boundary forM(A), that is, limn k�nk1=n = sup

Ĝ
j�̂j for every � 2 A.

Observe that A is not assumed to be unital. The standard subalgebras A = Md(S)
and A = L1(S) + C �e, with obvious group counterparts A = Md(G) and A = L1(G),
respectively, are S-subalgebras of M(S). Hence, the same is true of any bigger subalgebra.
For instance, Md(S) + L1(S), and M(S) itself, are S-subalgebras. Another example is the
algebra Mf(S) of finitely supported measures on S.

Now, we are ready to state the following lower estimate for semigroups.
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THEOREM 5.5.9. Let S be a semigroup satisfying conditions (i)–(iii) of Subsection 5.2.1
and the absorbtion condition (iv). Let A be an S-subalgebra of M(S) (not necessarily
closed). Then Æ1(A; Ŝb) > 1=2 and c1(Æ; A; Ŝb) > (2Æ � 1)�1 for all Æ, 1=2 < Æ < 1.

For the proof, we check (2.3) with X = Ŝb, see [N4], theorem 3.3.7.

6. Some Finite Groups and Semigroups

In this section we briefly consider the measure algebras M on finite groups and on finite
semigroups. In general, exact computations of the majorants cn(Æ;M; X) for these groups
and semigroups are, probably, even more complicated than in the infinite case. This is why
we mainly restrict ourselves to two examples: to cyclic groups Cd = Z=dZ of order d > 1,
to nilpotent semigroups Zd = Z+=(d + Z+) of order d. In a sense, the groups Cd “exhaust”
the group Z and the semigroups Zd “exhaust” Z+. Essentially, we consider the asymptotics
of cn(Æ;M(Cd); Ĉd) and cn(Æ;M(Zd); Ẑd) as d �!1.

6.1. Finite groups

6.1.1. Preliminaries. Let G be a finite group written additively, and mG the invari-
ant (Haar) measure normalized by mG(fxg) = 1 for every x 2 G. Clearly, the space
M(G) = L1(G) = l1(G) is a convolution Banach algebra with the unit e = Æ0. All complex
homomorphisms are given by the Fourier (Gelfand) transformation, f 7�! Ff(
) = f̂(
) =P

x2G f(x)(�x; 
), 
 2 Ĝ, where Ĝ is the dual group of unimodular characters written mul-
tiplicatively. Therefore, M(M(G)) = Ĝ. The Haar measure m = m

Ĝ
is normalized to

have total mass 1, so that the Fourier transformation F is a unitary operator from L2(G) to
L2(Ĝ). It is easy to see that we can regard the dual group Ĝ as the visible spectrum for any
convolution algebra on G. That is, in our previous notation, we set X = Ĝ.

Using equivalence of every two norms on a finite dimensional vector space, one can show
that for finite groups the majorants c1(Æ; A; Ĝ) always have the linear growth rate as Æ �! 0.
For example, k��1k 6 k(A)=Æ for every � 2 A satisfying j�̂(
)j > Æ for all 
 2 Ĝ.
Here k(A) is a constant depending only on a convolution algebra A on a finite group G, and
k(M(G)) 6 (card (G))1=2.

We can say more for the special case of cyclic groups Cd.

6.2. The cyclic group Cd

Let G = Cd = Z=dZ = f0; 1; : : : ; d� 1g be the cyclic group endowed with the quotient
composition. The dual group Ĉd is the group of d-th roots of unity Ĉd = f�k = �k : 0 6
k 6 d � 1g, where � = �(d) = e2�i=d. The Fourier transform of an element f 2 M(Cd)

is Ff(�k) = f̂(�k) =
P

06s<d f(s)�
s

k
, �k 2 Ĉd, and the norm is kfk =

P
06s<d jf(s)j. Let

ek = �fkg be the basic functions on Cd. The convolution on Cd, which we denote by Æ,
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follows the rule er Æ es = et, where t 2 Cd, t � (r + s)mod (d). Since we cannot compute
cn(Æ;M(Cd); Ĉd), we consider the behaviour of the upper bound cn(Æ; fCdg) defined by

(6.1) cn(Æ; fCdg) = supfcn(Æ;M(Cd); bCd) : d > 1g; 0 < Æ 6 1:

The following theorem shows that, in a sense, the algebras M(Cd) approximate the algebra
M(Z) = l1(Z) as d �!1.

THEOREM 6.2.1. (i) cn(Æ;M(Cd); Ĉd) 6 d1=2 �min(Æ�2; Æ�1n1=2) for all 0 < Æ 6 1 and
n > 1.

(ii) cn(Æ;M(Cd); Ĉd) 6 (2Æ2 � 1)�1 for all 1=
p
2 < Æ 6 1 and n > 1.

(iii) cn(Æ; fCdg) > cn(Æ;M(Z);T) for all 0 < Æ 6 1, where cn(Æ; fCdg) is defined in
(6.1). In particular, c1(Æ; fCdg) = 1 for 0 < Æ 6 1=2, and c1(Æ; fCdg) > (2Æ � 1)�1 for
1=2 < Æ 6 1.

6.3. The nilpotent semigroup Zd

The semigroupZd = Z+=(d+Z+) is defined as the set Zd = f0; 1; : : : ; d�1; dg endowed
with the operation (s; t) 7�! min(s+ t; d), and with the measure m(fsg) = 1 for 0 6 s < d
and m(fdg) = 0. Therefore, on the basic functions es, es(t) = Æs;t (the Kronecker delta), the
convolution is defined by the formula

es Æ et = es+t for s+ t < d; and es Æ et = 0 for s+ t > d:

The space M(Zd) = L1(Zd; m) of all measures (functions) on Zd endowed with this convo-
lution and with the usual L1 norm is a unital d-nilpotent Banach algebra. Namely, the algebra
M(Zd) has a generator e1 such that ed1 = 0. Hence, the only character on Zd is the trivial
one: 0 7�! 1 and s 7�! 0 for s > 0. We write Ẑd = f0g, and M(M(Zd)) = f0g with the
only homomorphism on M(Zd), namely � = (�(s))06s<d 7�! �(0).

Theorem 6.3.1 below gives the exact value of the majorant c1(Æ;M(Zd); f0g) and shows
that the algebra M(Z+) = l1(Z+) is, in a sense, the limit of M(Zd) as d �!1.

THEOREM 6.3.1. For all 0 < Æ 6 1, c1(Æ;M(Zd); f0g) = Æ�1
P

06k<d(
1�Æ
Æ
)k, and,

therefore, c1(Æ;M(Zd); f0g) � Æ�d as Æ �! 0. Moreover,

c1(Æ; fZdg) =: supfc1(Æ;M(Zd); f0g) : d > 1g = c1(Æ;M(Z+); D )

for all 0 < Æ 6 1, that is, c1(Æ; fZdg) = 1 for 0 < Æ 6 1=2, and c1(Æ; fZdg) = (2Æ � 1)�1

for 1=2 < Æ 6 1.

7. The Weighted Beurling-Sobolev Algebras

In this section, we present some results on estimates of the inverses in Beurling-Sobolev
algebras contained in [ENZ]. The principal conclusion is that the spectrumM(A) of a “suffi-
ciently smooth” Beurling-Sobolev algebra A = lp(Z; w), as well as of its analytic counterpart
A = lp(Z+; w), is (Æ � 1)-visible for every Æ > 0, that is Æ1(A;M(A)) = 0. We also show
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explicit upper bounds for c1(Æ; A;M(A)) for Æ > 0. The weights w are subject to some
regularity conditions.

In particular, the analytic Wiener algebra l1(Z+), which admits no norm control for the
inverses for 0 < Æ 6 1=2 (see Section 5), turns out to be the only exception in the scale of
weighted algebras l1(Z+; w), up to the weight regularity mentioned above. The reason for
this difference lies in a sort of “asymptotic compactness” of the algebra multiplication in the
presence of a non-trivial weight regularly tending to infinity, and in its absence for the un-
weighted case; see comments to theorem 7.2.4 for the definitions. Technically, the phenome-
non mentioned is measured by the compactness of the embedding of the algebra lp(Z+; w) or
lp(Z; w) in the multiplier algebra mult (lp(w0)) of the space of derivatives lp(w0) = Dlp(w),
as is required by the method of Section 3.

7.1. The Beurling-Sobolev algebras lp(w)

We start by fixing notation and recalling some basic facts on the weighted convolution
algebras lp(w), and on the Beurling-Sobolev algebras; by our definition, the latter represent
a special case of lp(w). Then we describe regularly growing weights generating a Beurling-
Sobolev algebra.

7.1.1. The topological Banach algebras lp(Z; w). For a positive function (a weight)
w : Z �!(0;1) and an exponent 1 6 p <1, we denote

lp(Z; w) = fx = (xn)n2Z : xw 2 lp(Z)g = fx : kxkp;w <1g;
where kxkp;w = (

P
n2Z jxnjpw(n)p)1=p < 1, with the usual modification for p = 1,

kxk1;w = supn2Z jxnw(n)j < 1. The convolution of two finitely supported sequences
is defined in the usual way, x � y = (

P
k2Zxkyn�k)n2Z. It is well known that the convolution

can be extended to a continuous multiplication on lp(Z; w) provided that

(7.1) Cp;w = sup
n2Z

 X
k2Z

�
w(n)

w(k)w(n� k)

�p
0
!1=p0

<1;

where p0 stands for the conjugate exponent, 1=p+ 1=p0 = 1. The case p = 1 is classical. For
p > 1, the sufficiency of the continuous analogue of (7.1) for the weighted space Lp(R; w) to
be a convolution algebra was proved by J. Wermer in [W]. For the case of lp(Z; w), the suffi-
ciency of (7.1), as well as the necessity of it in the case p =1, was proved in [N3] (without
knowing about Wermer’s result). In [KL], it was shown that, in general, (7.1) is not necessary,
but for an even (w(�n) = w(n)) and log-concave weight w this condition is necessary for
any p. However, a practically useful necessary and sufficient condition for regularly varying
weights first appeared only in [ENZ], see below theorem 7.1.5. For information on weighted
convolution Lp algebras on Rn , see [KS].

Assuming (7.1), we get kx � ykp;w 6 Cp;wkxkp;wkykp;w for every x; y 2 lp(Z; w). Hence,
lp(Z; w) becomes a unital topological Banach algebra with the unit e = e0 = (Æ0k)k2Z. For
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p = 1, the condition w(0) = 1, w(n+ k) 6 w(n)w(k) obviously is necessary and sufficient
for l1(Z; w) to be a Banach algebra. It is an exercise to show that for p > 1 the norm k � kp;w
is never a Banach algebra norm; on the contrary, for p = 1 every topological Banach algebra
weight is equivalent to a Banach algebra weight.

By a Beurling-Sobolev algebra we mean the space lp(Z; w) satisfying condition (7.1) and
endowed with the norm k � kp;w. We recall that the l1 weighted Banach algebras are usually
called Beurling algebras; in the general case of the algebras lp(Z; w), there are reasons for
adding the name of S. L. Sobolev, because for p = 2 and w(n) = (1 + jnj)� we get the
standard Sobolev spaces (algebras) on T as the spaces F lp(Z; w) of Fourier transforms.

7.1.2. Maximal ideals. A necessary condition. Since A = lp(Z; w) satisfies axioms (i)
and (ii) of Subsection 3.1, the spectrum of lp(Z; w) is the annulus A(r�; r+), A(r�; r+) =
f� 2 C : r�(w) 6 j�j 6 r+(w)g, where r� = r�(w) = limk�!�1w(k)1=k > 0, r+ =
r+(w) = limk�!+1w(k)1=k <1.

The Gelfand transform is given by x 7�! x̂,

x̂(�) = Fx(�) =
X
k2Z

xk�
k; � 2 A(r�; r+):

Moreover, it follows from the inclusion F lp(Z; w) � C(A(r�; r+)) that the algebra lp(Z; w)
is always embedded into the weighted algebra

l1(Z; rn�) = fx :
X
k<0

jxkjrk� +
X
k>0

jxkjrk+ <1g:

This provides a necessary condition for lp(Z; w) to be an algebra, namely, (rn�=w(n)) 2
lp

0

(Z), or, equivalently, X
k>0

(
rk+
w(k)

)p
0

<1;
X
k<0

(
rk�
w(k)

)p
0

<1;

with the usual modification for p0 =1.

7.1.3. Remarks and notation. With appropriate modifications, similar facts are true for
the analytic Beurling-Sobolev algebras lp(Z+; w). In this Section, we consider the case of
positive spectral radius only, r+(w) > 0.

In the case of lp(Z; w), we often assume a sort of weak symmetry of w, requiring that
r� = r+. Without loss of generality, we can normalize the weight so as to have r+ = 1. A
general method for obtaining algebras lp(Z; w) with arbitrary spectral radii is as follows. Let
lp(Z; w) be a Beurling-Sobolev algebra, and R = (R�; R+) be two positive numbers such
that R� 6 R+. Then, if we set WR(n) = Rn

sign (n)w(n) for n 2 Z, we get an algebra weight
satisfying Cp;WR

6 Cp;w and r�(WR) = R�r�. In particular, starting with r� = r+ = 1, we
can obtain an arbitrary pair of spectral radii.
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Notation. We use the symbol lp, respectively lp(w), as common notation for lp(Z) and
lp(Z+), respectively for lp(Z; w) and lp(Z+; w).

7.1.4. The Beurling-Sobolev algebras lp(w). Here we give regularity conditions on w
guaranteeing that lp(w) is a Beurling-Sobolev algebra.

THEOREM 7.1.5. I. Let 1 6 p 6 1, and v = log(w) be a positive eventually concave
function on R+ such that r+ = limx�!1w(x)1=x = 1. Assume that the following condition
is fulfilled: either, (a) there exists � > 0 such that w(x)=x� eventually decreases; or, (b) there
exists � > 1=p0 such that w(x)=x� eventually increases and has concave logarithm.

Then the following assertions are equivalent.
(i) The space lp(Z+; w) is an algebra.
(ii) The space lp(Z+; w) is a Beurling-Sobolev algebra.
(iii) 1=w 2 Lp0

(R+), or, equivalently, (1=w(n))n>0 2 lp
0

.

II. Let w be a weight function on Z such that r� = r+ = 1. Assume that (w(n))n>0
and (w(�n))n>0 are quasiincreasing sequences, that is sup

n;j>0w(n)w(n + j) < 1, and
similarly for (w(�n))n>0. Then lp(Z; w) is a Beurling-Sobolev algebra if and only if so are
lp(Z+; w) and lp(Z�; w).

7.1.6. Examples. (i) lp(jnj�� ) is a Beurling-Sobolev algebra if and only if �p0 > 1 for
p > 1, and � > 0 for p = 1. Here x� = max(x; 1) for x 2 R.

(ii) If l1(w�) is a Beurling algebra, w�(n) = w(n)=jnj�� , and �p0 > 1, then lp(w) is a
Beurling-Sobolev algebra.

7.2. When is the embedding lp(w) � mult (Dlp(w)) compact?

As was shown in Section 3, the compactness of this embedding plays a crucial role in the
estimates of the norms of inverses. The best polynomial approximations, measured by the �n
characteristics of this embedding, make it possible to control the norms of the inverses. This
completes the program proposed in Section 3 for estimates of c1(Æ; A;M(A)) in the case of
Beurling-Sobolev algebras A = lp(w). We consider the special case p = 1 of Beurling alge-
bras separately, because in this case we can state an explicit necessary and sufficient condition
for compactness. Similar analysis can be made for l1(w). For the Beurling-Sobolev algebras
lp(w), 1 < p < 1, some broad sufficient conditions are obtained. In this Subsection, we
follow the paper [ENZ].

The case of the group Z is slightly different from the semigroup Z+, because in these two
cases the convolutions differ in nature. Namely, on Z, to form (x � y)n we add products xkyj
with k and j both unbounded, and for Z+ this is not the case. In particular, this elementary
remark explains the difference between the nature of the weight �(n) = kenkmult on Z+

from that on Z, see 7.2.5–7.2.6. For instance, for any analytic Beurling-Sobolev algebra
A = lp(Z+; w) we always have A � mult (A0), but for the algebras A = lp(Z; w), in general,
this inclusion fails.
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As before, the weight w0 is defined by the formula w0(n) = w(n)=jnj�, where jnj� =
max(jnj; 1). It is clear that A0 = DA = lp(w0) for A = lp(w).

7.2.1. Continuous embeddings lp(w) � mult (lp(w0)). As was just mentioned, an ana-
lytic Beurling-Sobolev algebra lp(Z+; w) is always contained in mult (lp(Z+; w

0)).

THEOREM 7.2.2. If lp(Z+; w) is a Beurling-Sobolev algebra, then

lp(Z+; w) � mult (lp(Z+; w
0))

and the norm of this embedding does not exceed Cp;w.

It is easy to see that for the group case, that is, for lp(Z; w) in place of lp(Z+; w), some
more growth restrictions on w are required for the inclusion A = lp(Z; w) � mult (A0) =
mult (lp(Z; w0)). Indeed, the condition c = supk(kekkmult (A0)=kekkp;w) < 1 is necessary
for such an inclusion; it implies that w(k)w(�k) > const � jkj� for all k 2 Z.

Thus, for every 1 6 p < 2 there exist regularly growing weights w satisfying the condi-
tion (iii) of theorem 7.1.5 but c =1 (take w(k) = jkj�� with 1=p0 < � < 1=2). Consequently,
there are algebras lp(Z; w) for which the embedding lp(Z; w) � mult (lp(Z; w0)) fails. On
the contrary, for p > 2, any algebra lp(Z; w) with regularly growing weight seems to be
contained in mult (lp(Z; w0)).

On the other hand, we can guarantee the embedding in question (and even the compact-
ness of this embedding), if we require a stronger algebra condition. Below, we present some
results from [ENZ] obtained by using two different approaches.

First, we give a simple sufficient condition for the embedding lp0(w) � mult (lp(w0))
factorizing it through an auxiliary l1-space.

THEOREM 7.2.3. I. For any weighted space A = lp(w), or A = lp0(w), we have

kenkmult (A0) = �(n);

where

(7.2) �(n) = sup
k

jkj�w(k + n)

jk + nj�w(k)
;

k; n 2 Z, or k; n 2 Z+, respectively. Hence, we have the contractive embedding l1(�) �
mult (A0):

II. The embedding lp(w) � l1(�) is equivalent to

(7.3)
�

w
2 lp

0

:

Being valid, this embedding is automatically compact for p > 1, and it is compact for p = 1
if and only if

(7.4) lim
k

�(k)

w(k)
= 0;
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where k �!1 in the case of Z+, and jkj �! 1 in the case of Z.
III. For every weighted space lp(w), condition (7.3) for p > 1, and condition (7.4) for

p = 1, imply that lp(w) �c mult (lp(w0)).
IV. For a Beurling algebra A = l1(Z+; w) the following are equivalent
a) the embedding A � B = mult (A0) is compact,
b) l1(Z+; w) � l1(Z+; �) is compact,
c) limn;k�!1

w(n+k)

w(n)w(k)
= 0,

d) the multiplication in l1(Z+; w) is asymptotically compact.
Moreover, if A0 = fx 2 A : kxkA 6 1g is the unit ball of A = l1(Z+; w), then

�n(A0; B) = supk>n(�(k)=w(k)) where �n(A0; B) stands for the best polynomial approxi-
mation of degree n as defined in 3.2.3.

“Asymptotically compact multiplication” mentioned above means that for every � > 0
there exists an integer N such that kx � yk < �kxk � kyk for every x; y 2 lp(Z+; w) satisfying
xk = yk = 0 for 0 6 k < N .

The conditions a), b) and d) are still equivalent (after obvious modifications) for Beurling
algebras l1(Z; w) on Z, but the behaviour of the weight � is quite different in the cases of Z
and Z+. Examples of weights w, for which the rate of the best polynomial approximations
�n(A0; B) can be computed explicitly, can be provided using the known Hardy field of func-
tions, see Bourbaki [Bou]. In particular such a weight satisfying limx�!1 x�1 log(w(x)) = 0
generates an algebra l1(Z+; w) and satisfies the following dichotomy:

(i) either limx�!1(w(x)=x) = 0, and then �(n; w)=w(n) ' w(n)�1;
(ii) or limx�!1(w(x)=x) > 0, and then �(n; w)=w(n) ' n�1.

7.2.4. The best polynomial approximations related to the embedding

lp(w) � mult (lp(w0))

It is the key point of our approach. Knowing �m(A0; B), it remains only to apply the theory
of Section 3. As before, the cases of Z+ and Z are slightly different.

THEOREM 7.2.5. Let 1 6 p 6 1; suppose that v = log(w) satisfies the conditions
(a), (b), and (iii) of theorem 7.1.5. Then the space lp(Z+; w) is an algebra, the embedding
A = lp(Z+; w) � B = mult (lp(Z+; w

0)) is compact, and the following estimates are valid
for the best approximations �m(A0; B) of the unit ball A0 � A.

If condition (a) is satisfied with an exponent � 6 1, then

�m(A0; B) 6 (
X
j>m

w(j)�p
0

)1=p
0

:

If condition (b) is satisfied, then �m(A0; B) 6 c=m for � > 1 + 1=p0; �m(A0; B) 6 c �
(log(m))1=p

0

=m for � = 1 + 1=p0, and �m(A0; B) 6 c=m��1=p0

for 1=p0 < � < 1 + 1=p0,
where c stands for a constant depending on � and p.
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As is mentioned above, for the case of Z we have some extra constraints in order that the
embeddings in question would be compact. For instance, the condition

lim
jnj�!0

(kenkB=kenkA) = 0

is obviously necessary for A = lp(Z; w) �c B = mult (lp(Z; w0)). Since kenkB = �(n) >
jnj�w(0)=w(�n), we obtain that if limjnj�!1jnjw(n)w(�n) > 0, the embedding lp(Z; w) �
mult (lp(Z; w0)) cannot be compact.

THEOREM 7.2.6. Let w be a weakly symmetric normalized weight, that is r+ = r� = 1.
Each of the following conditions implies that lp(Z; w) is a Beurling-Sobolev algebra com-
pactly embedded into the multiplier space, A = lp(Z; w) �c B = mult (lp(Z; w0)), with the
following upper bounds for the best polynomial approximations �m(A0; B) of the unit ball
A0 � A. Here Em(p; �) stands for the right hand side of the corresponding inequality in
theorem 7.2.5 if � > 1, and Em(p; �) = c �m1�2�+1=p0

otherwise.
If C1;w� < 1 for an exponent � > 2�1(1 + 1=p0), where w� = (w(k)=jkj�� )k>0, then

�m(A0; B) 6 C1;w�Em(p; �).
If Cp;w� <1 and � > 1=2, then �m(A0; B) 6 Cp;w�Em(1; �).
For slowly increasing weights, we refer to [ENZ] for a simple direct estimate for the best

approximations �m(A0; B).

7.3. Some explicit estimates of the norm controlling constants c1(Æ; lp(w))

Now we are ready to obtain explicit estimates of the inverses in the Beurling-Sobolev
algebras. To this end, we combine theorems of Section 3 with the estimates of the rate of
polynomial approximations �m(A0; B) provided in Subsections 7.1–7.2. Recall that the ma-
jorant M of theorem 3.2.5 depends on the distribution function �0 of the sequence �m(A0; B)
and on the multiplier norms �(k) of the basis vectors of lp(w). In 7.3.1 below we supposing
r+ = r� = 1; for the case where r� < r+, see the remark at the end of this Subsection.

THEOREM 7.3.1. Let A be a Beurling-Sobolev algebra, A = lp0(Z; w) or lp0(Z+; w), com-
pactly embedded into B = mult (lp(w0)). Then Æ1(A;M(A)) = 0, and for all Æ > 0 we have
the estimate c1(Æ; A;M(A)) 6 w(0)Æ�1 + M1(Æ), where M is given in theorem 3.2.5 and
kejkB = �(j) (see formula (7.2)), and the constants E and C depend on the constant (7.1)
and on the norm of the embedding lp0(Z+; w) � B = mult (lp(w0)).

7.3.2. Examples of estimates of inverses on Z+. Here are some typical Beurling-
Sobolev algebras A = lp(Z+; w), 1 6 p 61.

(i) w(n) = n�� , � > 1 + 1=p0. Then, c1(Æ; lp(Z+; n
�

� )) 6 c(�; p)=Æ4�+2.
(ii) w(n) = n�� , � = 1 + 1=p0. Then, c1(Æ; lp(Z+; n

�

� )) 6 c(�; p)(log(1=Æ))�=p
0

=Æ4�+2.
(iii) w(n) = n�� , 1=p0 < � < 1 + 1=p0. Then, c1(Æ; lp(Z+; n

�

� )) 6 c(�; p)=Æ2�+1, where
� = (�p0 � 1)�1.
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(iv) w(n) = en
�

, 0 < � < 1. Then, c1(Æ; lp(Z+; w)) 6 c(�; p) � expfd�Æ�2�(1��)g � Æ�2 �
log 1

Æ
.

7.3.3. Examples of estimates of inverses on Z. Comparison of the cases of Z and Z+

given in Subsections 7.1 and 7.2 shows that the explicit estimates of the inverses for rapidly
growing weights should be the same on Z and on Z+, up to the sharp values of constants.
Here, “rapidly” means at least as fast as the linearly growing weight w(n) = jnj�, n 2 Z. For
slower weights, e.g., for w(n) = jnj�� , � < 1, our method gives faster growth of the constants
c1(Æ; lp(w)) on Z than on Z+. This method stops completely at the exponent � = 1

2
(1 + 1

p0
).

For this case we refer to the recent paper [E], where a different approach based on a Björk’s
paper [B] is employed. We restrict ourselves to a few examples illustrating the above theory.

(i) w(n) = jnj�� , � > 1 + 1=p0 or 1 6 � 6 1 + 1=p0. Then one has the same results as in
7.3.2 (i), (ii) and (iii), with modified constants.

(ii)w(n) = jnj�� , 2�1(1+1=p0) < � < 1. Then c1(Æ; lp(Z; jnj��)) 6 c(�; p)=Æ2+2(1+�)(2��).
Observe that the right hand side of the last inequality diverges to infinity for � �!

2�1(1 + 1=p0) = �p, because � �! 1. However, in order to get a finite majorant, we
can consider a weight growing slightly faster than the critical weight w(n) = jnj�p� . This can
be done using w(n) = jnj�p� (log(1 + jnj�))
 .
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