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ABSTRACT. I describe the work of Olevskiı̆, Tao and others on the rearrangement of
orthogonal series. It turns out that arbitrary rearrangements produce trouble for all
orthogonal and wavelet methods, that decreasing rearrangements produce trouble for
Fourier series, but that wavelet expansions continue to work well under decreasing
rearrangement.

1. Introduction

In this paper we shall move without comment between the circle T = R=Z, the closed
interval [0; 1] and the half closed interval [0; 1) as seems most convenient. When our results
deal with almost everywhere behaviour this does not create any problems, when we want
everywhere convergence readers may have to produce their own argument to deal with the
point 1.

What do we mean when we consider
1X

u=�1

f̂(u) exp 2�iut ?

Traditionally we take

lim
N!1

NX
u=�N

f̂(u) exp 2�iut

and the only variations that we allow concern the mode of convergence (pointwise, Lp, etc). A
sign that this may be too narrow an approach appears when we consider the two dimensional
case of a function f : T2 ! C . The obvious way to proceed is to takeX

(u;v)2Z2

f̂(u; v) exp 2�i(ut+ vs) = lim
N!1

X
(u;v)2�(N)

f̂(u; v) exp 2�i(ut+ vs)
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with the �(N) finite subsets of Z2 such that �(1) � �(2) � : : : and
S
1

N=1 �(N) = Z
2.

However, it is well known that, even when f is quite well behaved, different choices of the
sequence �(N) give rise to different behaviour.

The question of ‘correct order’ also arises, even in the one dimensional case, from signal
processing. If we seek to store and reconstruct a function f : T ! C by using its Fourier
coefficients it is natural to to use them in decreasing order of magnitude and to considerX

jf̂(u)j>�

f̂(u) exp 2�iut

rather than X
juj6N

f̂(u) exp iut:

Any easy optimism about rearrangements is quenched by the following result.

THEOREM 1. There exists a real f 2 L2(T) and a bijection � : Z! Z such that

lim sup
N!1

�����
NX

u=�N

f̂(�(u)) exp i�(u)t

����� =1:

for almost all t 2 T.

This theorem was first stated by Kolmogorov. A proof of Kolmogorov’s statement was
sketched by Zahorskiı̆, given in detail by Ulyanov and much simplified by Olevskiı̆. The
reader who consults [7] will find an excellent bibliography.

Pólya says that sometimes the easiest way to prove a result is to generalise it and prove
the generalisation. By the time Kolmogorov’s theorem reached Ulyanov and Olevskiı̆ it had
taken the following form.

THEOREM 2. Let �1, �2, �3, . . . form a complete orthonormal system in L2([0; 1)). Then
there exists a real f 2 L2(T) and a bijection � : N ! N such that

lim sup
N!1

�����
NX
u=0

f̂(�(u))��(u)(t)

����� =1:

for almost all t 2 [0; 1).

Here as usual we write

f̂(�r) = hf; �ri =

Z 1

0

f(t)�r(t) dt:

In fact Olevskiı̆ improved Theorem 2 by replacing f 2 L2(T) by f continuous. We shall
prove a result which includes this as Theorem 5.

In the years since Olevskiı̆ published his result, more general systems than those of com-
plete orthonormal type have assumed practical importance.
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DEFINITION 3. We say that
�1; �2; �3; : : :

form a Riesz basis for L2([0; 1)) if the linear span of the �n is dense in L2 and there exists an
A with A > 1 such that

A�1
1X
n=0

janj
2
6







1X
n=0

an�n







2

2

6 A
1X
n=0

janj
2:

We callA the Riesz constant of the system. Easy functional analysis reveals the following
lemma.

LEMMA 4. Let �1, �2, �3, . . . form a Riesz basis for L2([0; 1)). Then there exists a unique
sequence  1,  2,  3, . . . of bounded L2 norm such that

P
1

n=0 jh n; fij
2 <1 and

f =

1X
n=0

h n; fi�n

for every f 2 L2: If f =
P

1

n=0 an�n then an = h n; fi for all n.

We write f̂(n) = h n; fi.
As Olevskiı̆ indicates very clearly his method can be extended to Riesz bases.

THEOREM 5. Let �1, �2, �3, . . . form a Riesz basis for L2([0; 1]). Then there exists a real
continuous f and a bijection � : N ! N such that

lim sup
N!1

�����
NX
u=0

f̂(�(u))��(u)(t)

����� =1:

for almost all t 2 [0; 1].

If we ask for which complete orthonormal system Theorem 2 is least plausible one answer
would be the Haar system. Set

�(N) = f(r; s) 2 Z
2 : 0 6 s 6 2r � 1 and N > r > 0g

and � =
S

N>0 �(N). Consider intervals of the form

E(r; s) = [s2�r; (s+ 1)2�r)

where (r; s) 2 �. We define

�r;s(t) = 1 if t 2 E(r + 1; 2s)

�r;s(t) = �1 if t 2 E(r + 1; 2s+ 1)

�r;s(t) = 0 otherwise

where, again, (r; s) 2 �. We call the �r;s together with the function 1 = ��1;0 the Haar
system. We call the Tr;s = 2r=2�r;s together with the function 1 the normalised Haar system.
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It is well known that the normalised Haar system is a complete orthonormal system. If we
put the standard order

(r; s)� (r0; s0) if r0 > r or r = r0 and s0 > s

on the Haar system it enjoys remarkable convergence properties. For example if f is contin-
uous X

(u;v)�(r;s)

f̂(u; v)Tu;v ! f

uniformly as we allow (r; s) to increase so as to exhaust the system.
If we can prove Theorem 2 for the Haar system, one is tempted to say, we can surely prove

it for any orthonormal system. Olevskiı̆ showed that this is indeed the case and we shall see
that once we have Theorem 2 for the Haar system we can obtain the rest of the theorem from
this particular case. As we might expect on general grounds the key to the Haar system case
lies in a finite version of the theorem.

LEMMA 6. Let � > 0 and K > 1 be given. Then we can find a bijection

� : f1; 2; 3; : : : ; 2N+1
� 1g ! �(N)

and real ar;s [(r; s) 2 �(N)] such that������
X

(r;s)2�(N)

ar;s�r;s(t)

������ 6 1

for all t 2 [0; 1) but

max
16k62N+1�1

�����
kX

j=1

a�(j)��(j)(t)

����� > K

for all t =2 E where E is a set of measure at most �.

The next section is devoted to the proof of this key lemma. Once it is understood the rest
is relatively routine.

2. Olevskiı̆’s Lemma

We shall need two simple results, the first combinatorial and the second probabilistic.

LEMMA 7. If a1; a2; : : : ; am > 0 and am+1; am+2; : : : ; aN 6 0 then

max
16j6N

�����
jX

r=1

ar

����� > 1

3

NX
r=1

jarj:
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PROOF. Observe that
NX
r=1

jarj = 2

mX
r=1

ar �
NX
r=1

ar 6 3 max
16j6N

�����
jX

r=1

ar

����� :

LEMMA 8. Let X1, X2, . . . , XN be independent identically distributed random variables
with Pr(Xr = 1) = Pr(Xr = �1) = 1=2 and let K be an integer with K > 1. Then

(i) Pr
�
max16j6N

P
j

r=1Xr > K
�
6 2Pr

�P
N

r=1Xr > K
�
:

(ii) Pr
�
max16j6N

���Pj

r=1Xr

��� > K
�
6 4Pr

����PN

r=1Xr

��� > K
�
:

(iii) Pr
�
max16j6N

���Pj

r=1Xr

��� > K
�
6 2NK�2:

PROOF. (i) This is the simplest form of the reflection principle. (See e.g. [2] Chap-
ter 3.)

(ii) Use symmetry.

(iii) Use Chebychev’s inequality to bound Pr
����PN

r=1Xr

��� > K
�

.

Of course, we can get much better estimates in (iii) but the only use I can find for such
estimates is to study the Hausdorff dimension of the exceptional set of convergence in Theo-
rem 2 when applied to Haar functions.

By using the standard interpretation of Haar functions in terms of coin tossing, Lemma 8
gives the following result.

LEMMA 9. IfN andK are strictly positive integers then we can find ap;q taking the values
0 or 1 [(p; q) 2 �(N)] and a set E of measure at most 4NK�2 such that������

X
(p;q)2�(N)

ap;q�p;q(t)

������ 6 K

for all t 2 [0; 1), but X
(p;q)2�(N)

jap;q�p;q(t)j = N

for all t =2 E.

PROOF. Consider [0; 1) with Lebesgue measure as a probability space. Let

Xj(t) = (�1)[2
jt]
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(where [2jt] is the integer part of 2jt). The Xj satisfy the conditions of Lemma 8. It follows
by Lemma 8 (iii) that the set

E =

(
t : max

16j6N

�����
jX

r=1

Xr

����� > K

)

has measure at most 4NK�2.
To define ap;q we look at the interval E(p; q) = [p2�q; (p + 1)2�q) and observe thatP

j

r=1Xr(t) is constant on E(p; q) for all 1 6 j 6 q � 1. We may thus define ap;q = 1 if

max
16j6N

�����
jX

r=1

Xr(t)

����� 6 K � 1

for t 2 E(p; q), and ap;q = 0 otherwise.
If we now set

Y (t) =
X

(p;q)2�(N)

ap;q�p;q(t)

then Y is the random variable defined by

Y (t) =
NX
r=1

Xr(t)

if jmax16j6N
P

j

r=1Xr(t)j 6 K but

Y (t) =

j(t)X
r=1

Xr(t)

where j(t) is the smallest j with j
P

j(t)
r=1Xr(t)j = K. In more vivid terms, toss a fair coin

keeping track of the difference between the number of heads and tails thrown. If this ever
takes the value K or �K stop and record the value as Y . If, after N throws this has not
happened, record the value after N throws as Y . By definition jY (t)j 6 K and if t =2 E (so
we complete the N throws) X

(p;q)2�(N)

jap;q�p;q(t)j = N

as required.

Now, instead of taking the sequence of heads and tails as chance presents them, we wish
to take all the heads first and then all the tails. To do this we introduce the Olevskiı̆ order on
�

(p0; q0) � (p; q) if (2p0 + 1)2�q
0

> (2p+ 1)2�q:
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The Olevskiı̆ order is more intricate than may at first appear and the reader should try ordering
the (p; q) with (p; q) 2 �(N) for N = 5 or N = 6. Observe that (p0; q0) � �(p; q) if the mid-
point of supp�p0;q0 is to the right of (i.e. greater than or equal to) the mid-point of supp�p;q.
We observe that �p;q(t) > 0 if t is strictly to the left of (i.e. strictly less than) the mid-point
of supp�p;q and �p;q(t) 6 0 if t is to the right of (i.e. greater than or equal to) the mid-point
of supp�p;q. It follows that for each t 2 [0; 1) there is a �(t) 2 �(N) such that

�p;q(t) 6 0 for� � (p; q); �p;q(t) > 0 for(p; q) � ��:

Using this observation we easily arrive at the result we require.

LEMMA 10. Suppose that N and K are strictly positive integers and ap;q and E are as in
Lemma 9. Then

max
�2�(N)

������
X

��(p;q)

ap;q�p;q(t)

������ > N=3

for all t =2 E.

PROOF. By Lemma 7 and the last sentence of the previous paragraph

max
�2�(N)

���X� � (p; q)ap;q�p;q(t)
��� > 1

3

X
(p;q)2�(N)

jap;q�p;q(t)j = N=3

for all t =2 E.

THEOREM 11. Let � > 0 and � > 1 be given. Then we can find an N > 1, 1 > b > 0,
bp;q taking the values 0 or b [(p; q) 2 �(N)] and a set E such that

(i) j
P

(p;q)2�(N) bp;q�p;q(t)j 6 1 for all t 2 [0; 1),
(ii) max�2�(N) j

P
��(p;q) ap;q�p;q(t)j > � for all t =2 E

(iii) jEj < �.

PROOF. Choose an integer M with M > 4��1 and M2 > 3�. Set N = M5, K = M3

and choose ap;q and E as in Lemma 9. If we now put bp;q = ap;q=K, b = 1=K then all the
conclusions of the lemma with the exception of condition (ii) follow at once from Lemma 9.
Condition (ii) itself follows from Lemma 10.

Standard ‘rolling hump’ (or ‘condensation of singularities’) methods now give the fol-
lowing result.

EXERCISE 12. Let �n [n 2 N ] be the Haar system enumerated in some way. Then there
exists a real f 2 L1([0; 1)) and a bijection � : N ! N such that

lim sup
N!1

�����
NX
u=0

f̂(�(u))��(u)(t)

����� =1:

for almost all t 2 [0; 1).
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We leave it as an exercise for the reader because we shall prove stronger results. However
these results will require extra complications in their proofs and the reader may find the more
complex proofs easier to follow if he or she has worked through an easier case.

3. Extension To General Spaces

We have not yet exhausted the strength of Pólya’s dictum. What happens if we seek to
extend Theorem 2 to more general measure spaces? A moment’s reflection brings to mind
the the fact that, so far as measure theory is concerned, all nice measure spaces which are
not obviously different are the same. Recall that a measure space (X;F ; �) with positive
measure � is non-atomic if givenE 2 F with �(E) > 0 we can find F 2 F with F � E and
�(E) > �(F ) > 0. The following result is typical (see e.g. theorem 9, page 327 of [8]).

THEOREM 13. Let X be a complete separable metric space equipped with BX its �-
algebra of Borel sets and � a non-atomic measure on BX . If I = [0; 1] is the unit interval
with its usual metric, BI its �-algebra of Borel sets, and m is the usual Lebesgue measure
then there exists a bijective map F : I ! X such that F and F �1 carry Borel sets to Borel
sets of the same measure.

We shall not use Theorem 13 but we shall use the lemma which underlies its proof and
the proof of results like it.

LEMMA 14. Let (X;F ; �) be a non-atomic probability space. If E 2 F and 1 > � > 0
then we can find F 2 F with E � F and �(F ) = ��(E).

Lemma 17 follows easily from a lemma of Saks given as Lemma 7 of section IV.9.8 of
Dunford and Schwartz [1]. There is a discussion of isomorphism theorems in Chapter VIII of
Halmos’s Measure Theory [3]. However before readers rush off to inspect the wilder shores
of measure theory they should note that all they will learn is that they could have stayed at
home, since [0; 1] with Lebesgue measure is the type of all non-atomic measure spaces.

In view of the preceding discussion, it is natural to aim at the following generalisation of
Theorem 2. (The extension of Definition 3 to general probability spaces is obvious.)

THEOREM 15. Let (X;F ; �) be a probability space with � non-atomic. Let �1, �2, . . . be
a Riesz basis in L2(X). Then there exists a real f 2 L2(X) and a bijection � : N ! N such
that

lim sup
N!1

�����
NX
u=0

f̂(�(u))��(u)(t)

����� =1:

for almost all t 2 X .

The result is clearly false if � is not non-atomic. Suppose E 2 F is an atom, that is
�(E) > 0 and if F 2 F with F � E then �(F ) = �(E) or �(F ) = 0. Then if gn; g 2 L2(X)
and jjgn � gjj2 ! 0 it follows that gn(t)! g(t) for �-almost all t 2 E.
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It is not hard to obtain Theorem 15 from Theorem 2 by the standard argument used to
prove results like Theorem 13. However, it is more interesting to ask how we might tackle
Theorem 15 directly and, in particular, what we are to make of Theorem 11 in the general
context. If we do so we are rewarded with a key insight — Theorem 11 is a combinatorial
theorem.

THEOREM 16. Let (X;F ; �) be a probability space. Let � > 0 and � > 1 be given. Then
we can find an N > 1, 1 > b > 0 and bp;q taking the values 0 or b [(p; q) 2 �(N)] with the
following property.

Suppose that we have a collection of sets En;r 2 F such that

(A) E(2r � 1; n+ 1) \ E(2r; n+ 1) = ;, E(2r� 1; n+ 1) [ E(2r; n+ 1) = E(r; n) for
all (r; n) 2 �N .

(B) jE(r; n)j = 2�n for all (r; n) 2 �N+1.

Let us set

Hr;n(t) = 1 for t 2 E(2r � 1; n+ 1),

Hr;n(t) = �1 for t 2 E(2r; n+ 1),

Hr;n(t) = 0 otherwise.

whenever (r; n) 2 �N . Then
(i) j

P
(p;q)2�(N) bp;qHp;q(t)j 6 1 for all t 2 [0; 1),

and there is a set E 2 F such that
(ii) max�2�(N) j

P
��(p;q) bp;qHp;q(t)j > � for all t =2 E

(iii) jEj < �.

PROOF. This is just Theorem 11.

To see why this is indeed an insight let us return to the concrete case of Lebesgue mea-
sure on [0; 1) and consider the most important Riesz basis of all, the exponentials en(t) =
exp(2�int). If we try to convert Theorem 11 into a result on Fourier series we run into the
problem that different Haar functions do not ‘occupy different parts of the frequency spec-
trum’. (Indeed the Fourier coefficients of the Haar functions �p;q with fixed p are all of same
amplitude differing only in phase.) However, if we ‘shuffle [0; 1)’ the Ep;q can be chosen so
that the Hp;q are, for practical purposes, in ‘different parts of the frequency spectrum’. That
is, although we do not have the ideal outcome in which at most one of the Ĥp;q(j) is non-zero
for each j, we can arrange that at most one of the Ĥp;q(j) is large for each j.

Since there seems no further advantage in considering general measure spaces we shall
stay within [0; 1) and [0; 1]. However, readers who wish to work more generally will find that
they only need the following simple consequence of Lemma 14.

LEMMA 17. Let (X;F ; �) be a non-atomic probability space. If F 2 F and �(F ) > 0
we can find a sequence ej of orthogonal functions and sets Fj 2 F with Fj � F such that
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(i) ej(t) = 1 for t 2 Fj , ej(t) = �1 for t 2 F n Fj, ej(t) = 0 otherwise,
(ii) �(Fj) = �(F )=2.

PROOF. Set E(0; 0) = F . By repeated use of Lemma 14 with � = 1=2 we can find
En;r 2 F such that

(A) E(2r � 1; n+ 1) \ E(2r; n+ 1) = ;, E(2r� 1; n+ 1) [E(2r; n+ 1) = E(r; n) for
all 1 6 r 6 2n,

(B) jE(r; n)j = 2�njF j for all 1 6 r 6 2n.

Now set Fj =
S2j

r=1E(2r � 1; j + 1) and define ej as in condition (i).

4. Extension to general Riesz bases

In this section we work in [0; 1] with Lebesgue measure. In order to put into effect the
programme sketched at the end of the last section we need a sequence of easy lemmas. It may
be helpful for the reader to keep in mind as examples both the ‘well behaved’ orthonormal
system of exponentials and some other system �n where �n =2 L1.

LEMMA 18. Let �1, �2, . . . be a Riesz basis. If e1, e2, . . . form an orthonormal sequence
then

êk(j)! 0

as k !1 for each fixed j.

PROOF. Referring back to Lemma 4 we see that êk(j) = h j; eki and the result is obvi-
ous.

LEMMA 19. Let �1, �2, . . . be a Riesz basis. Suppose that Æ > 0, M > 0 and that
F is a set of strictly positive measure. Then we can find E a measurable subset of F with
jEj = jF j=2 and M 0 > M such that if we set H(t) = 1 for t 2 E, H(t) = �1 for t 2 F n E
and H(t) = 0 otherwise then

MX
j=1

jĤ(j)j2 +
1X

j=M 0

jĤ(j)j2 < Æ:

PROOF. Combining the results of Lemma 17 and Lemma 18 we see that we can find E a
measurable subset of F with jEj = jF j=2 such that, if H is defined as stated,

MX
j=1

jĤ(j)j2 < Æ=2:

Since H 2 L2 there exists an M 0 > M such that
P

1

j=M 0 jĤ(j)j2 < Æ=2, so we are done.

We now have our basic construction.
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THEOREM 20. Let �1, �2, . . . be a Riesz basis. Suppose that Æ > 0 and N;M 0(0; 0) > 1
are given. Then we can find integersM(r; n) < M 0(r; n) with M(r; n) > M 0(0; 0)—together
with a collection of measurable sets E(n; r) such that

(A) E(2r � 1; n+ 1) \ E(2r; n+ 1) = ;, E(2r� 1; n+ 1) [ E(2r; n+ 1) = E(r; n) for
all (r; n) 2 �N ,

(B) jE(r; n)j = 2�n for all (r; n) 2 �N+1,
(C) if we write �(r; n) = fk : M(r; n) 6 k 6 M 0(r; n)g then �(r; n) \ �(s;m) = ;

whenever (r; n) 6= (s;m),

and such that, if we set

Hr;n(t) = 1 for t 2 E(2r � 1; n+ 1),

Hr;n(t) = �1 for t 2 E(2r; n+ 1),

Hr;n(t) = 0 otherwise.

whenever (r; n) 2 �N then

X
j =2�(r;n)

jĤr;n(j)j
2 < Æ:

PROOF. Use Lemma 19 repeatedly.

THEOREM 21. Let � > 0 and � > 1 be given and take N > 1, b and bp;q [(p; q) 2 �(N)]
be as in Theorem 16. Suppose that �1, �2, . . . is a Riesz basis, Æ > 0 and M 0(0; 0) > 1 are
given and that E(n; r), �(r; n) and Hr;n are constructed as in Theorem 20. Then if we set

f(t) =
X

(p;q)2�(N)

bp;qHp;q(t)

we have

(i) jjf jj1 6 1.

Further, provided only that Æ is small enough, there is a measurable set F such that

(ii) max�2�(N) j
P

��(p;q)

P
j2�(p;q) jf̂(j)�j(t)j > �� 1 for all t =2 F ,

(iii) jF j < 2�.
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PROOF. Conclusion (i) is just conclusion (i) of Theorem 20. To obtain (ii) and (iii) we
proceed as follows. Observe that







X
��(p;q)

X
j2�(p;q)

f̂(j)�j �
X

��(p;q)

bp;qHp;q








2

6
X

��(p;q)

jbp;qj
X

j2�(p;q)







Hp;q �
X

j2�(p;q)

f̂(j)�j








2

6
X

��(p;q)

X
j2�(p;q)







Hp;q �
X

j2�(p;q)

f̂(j)�j








2

:

But, for each (p; q) 2 �(N),





Hp;q �
X

j2�(p;q)

f̂(j)�j








2

6








X

j =2�(p;q)

Ĥp;q(j)�j








2

+
X

(r;s)6=(p;q)








X

j2�(p;q)

Ĥr;s(j)�j








2

6








X

j =2�(p;q)

Ĥp;q(j)�j








2

+
X

(r;s)6=(p;q)








X

j =2�(r;s)

Ĥr;s(j)�j








2

=
X

(r;s)2�(N)








X

j =2�(r;s)

Ĥr;s(j)�j








2

:

But, writing A for the Riesz constant of the basis, Theorem 20 tells us that






X

j =2�(r;s)

Ĥr;s(j)�j








2

2

6 A
X

j =2�(r;s)

jĤr;s(j)j
2 < AÆ:

Thus, retracing our steps, 





Hp;q �
X

j2�(p;q)

f̂(j)�j








2

< 2N(AÆ)1=2
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and 






X

��(p;q)

X
j2�(p;q)

f̂(j)�j �
X

��(p;q)

bp;qHp;q








2

< 22N(AÆ)1=2

for all � 2 �(N).
If we now write

F� =

8<
:t :

������
X

��(p;q)

X
j2�(p;q)

f̂(j)�j �
X

��(p;q)

bp;qHp;q

������ > 1

9=
; ;

then Chebychev’s inequality and the last inequality of the preceding paragraph tell us that

jF�j < 24NAÆ:

Thus if we set F = E [
S

�2�(N) F� conclusion (ii) follows from conclusion (ii) Theorem 20
whilst conclusion (iii) Theorem 20 tells us that

jF j < � + 25NAÆ;

and (iii) holds provided only that Æ is small enough.

Theorems 20 and 21 give us what we want. However, we have accumulated a fair amount
of notation in the course of the construction which we can now jettison to provide a simpler
conclusion.

THEOREM 22. Let �1, �2, . . . be a Riesz basis. Given K > 1 we can find an integer
M(K) > 1 with the following properties. Given any integer m > 1 and any � > 0 we can
find a function f 2 L1([0; 1]), an integer m0 > m, a bijection � : N ! N with �(r) = r
for 1 6 r 6 m and for r > m0, integers m 6 p(1) 6 p(2) 6 p(3) : : : p(M) 6 m0 and a
measurable set E such that

(i) jjf jj1 6 1,
(ii)

P
m

j=1 jf̂(j)j
2 6 �,

(iii) max16k6M j
P

p(k)
j=1 f̂(�(j))��(j)j > K for all t 2 E,

(iv) jEj > 1�K�1.

The distance from L1([0; 1]) to C([0; 1]) is usually not very great. The present case is no
exception.

THEOREM 23. In Theorem 22 we may take f continuous.

PROOF. This is entirely routine. Let the M(K) of our new Theorem 23 be chosen to be
the M(2K + 2) of the old Theorem 22. Then, by Theorem 22, given any m > 1 and any
� > 0 we can find a function f 2 L1([0; 1)), an integer m0 > m, a bijection � : N ! N with
�(r) = r for 1 6 r 6 m and for r > m0, integers m 6 p(1) 6 p(2) 6 p(3) : : : p(M) 6 m0

and a measurable set E 0 such that
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(i) 0 jjf jj1 6 1,
(ii) 0

P
m

j=1 jf̂(j)j
2 6 �,

(iii) 0 max16k6M j
P

p(k)
j=1 f̂(�(j))��(j)(t)j > K + 1 for all t 2 E,

(iv) 0 jE 0j > 1�K�1=2.

Let Æ > 0 be a small number to be determined and choose f 2 C([0; 1)) such that f satisfies
condition (i) and jjf � gjj2 6 Æ=A2. Automatically 

1X
j=1

jf̂(j)� ĝ(j)j2

!1=2

6 Æ=A

so condition (ii) is satisfied provided only that we choose Æ small enough.
Next we observe that







p(k)X
j=1

f̂(j)�j �

p(k)X
j=1

ĝ(j)�j








2

6 A

0
@p(k)X

j=1

jf̂(j)� ĝ(j)j2

1
A

1=2

6 A

 
1X
j=1

jf̂(j)� ĝ(j)j2

!1=2

6 Æ:

Thus writing

Ek =

8<
:t 2 [0; 1) :








p(k)X
j=1

f̂(j)�j �

p(k)X
j=1

ĝ(j)�j







 > 1

9=
; ;

we have, by Chebychev’s inequality,

jEkj 6








p(k)X
j=1

f̂(j)�j �

p(k)X
j=1

ĝ(j)�j








2

= Æ:

Thus, setting E = E 0 n
S

N

k=1, we see that (iii) holds automatically and

jEj > jE 0
j �

NX
k=1

jEkj > (1� �=2)�NÆ

so that (iv) holds provided only that we choose Æ small enough.

The remainder of the construction follows a standard rolling hump (condensation of sin-
gularities) pattern using Chebychev’s inequality in the same way as in the two previous
proofs. In view of the amount of notation involved readers will probably prefer to do it
themselves rather than follow my proof.

It is easy to put the bricks of Theorem 23 together.
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LEMMA 24. Let �1, �2, . . . be a Riesz basis with constant A. Let m0(0) = 1 We can con-
struct inductively positive integers M(n), m(n), m0(n) with m0(n � 1) < m(n), continuous
functions fn, bijections �n : N ! N with �n(r) = r for 1 6 r 6 m0(n�1) and form0(n) 6 r,
integers m 6 p(1; n) 6 p(2; n) 6 p(3; n) : : : p(n;M(n)) 6 m0 and a measurable set E such
that

(i) n jjfnjj1 6 2�n,
(ii) n

P
m(n)
r=1 jf̂n(r)j

2 6 A�12�4n�4m(n)2,
(iii) n max16k6M(n) j

P
p(k;n)
j=1 f̂n(�(j))��n(j)(t)j > 2n for all t 2 E,

(iv) n jEnj > 1� 2�n,
(v) n

P
n

j=1

P
1

r=m0(n) jf̂j(r)j
2 6 A�12�2n�4M(n + 1)�2.

PROOF. Conditions (i)n to (iv)n come directly from Theorem 23. The key point is that
Theorem 23 allows us to define M(n+ 1) before we define m0(n) in such a way as to satisfy
condition (v)n.

PROOF OF THEOREM 5. As I said above, this is routine. It is easy to check that �(r) =
�n(r) for m0(n � 1) 6 r 6 m0(n) gives a well defined bijection � : N ! N . By the
conditions (i)n gn =

P
n

r=1 fr converges uniformly to a continuous function f as n ! 1.
Trivially

������
p(k;n)X
j=1

f̂(�(j))��(j)(t)�

p(k;n)X
j=1

f̂n(�(j))��(j)(t)

������ 6 kgn�1k1 + jGk;n(t)j

6 1 + jGk;n(t)j;

where

Gk;n(t) =
n�1X
r=1

1X
j=p(k;n)+1

f̂r(�(j))��(j)(t) +
1X

r=n+1

p(k;n)X
j=1

f̂r(�(j))��(j)(t):
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Using the properties of Riesz bases together with conditions (ii)(r) and (v)(r) we have

kGk;nk2

6

n�1X
r=1








1X

j=p(k;n)+1

f̂r(�(j))��(j)








2

+

1X
r=n+1








p(k;n)X
j=1

f̂r(�(j))��(j)








2

6 A1=2

n�1X
r=1

0
@ 1X

j=p(k;n)+1

jf̂r(�(j))j
2

1
A

1=2

+ A1=2

1X
r=n+1

0
@p(k;n)X

j=1

jf̂r(�(j))j
2

1
A

1=2

6 A1=2

n�1X
r=1

0
@ 1X

j=m0(n�1)

jf̂r(�(j))j
2

1
A

1=2

+ A1=2

1X
r=n+1

0
@m(n)X

j=1

jf̂r(�(j))j
2

1
A

1=2

6 A1=2

n�1X
r=1

0
@ 1X

j=m0(n�1)

jf̂r(�(j))j
2

1
A

1=2

+ A1=2

1X
r=n+1

0
@m(r�1)X

j=1

jf̂r(�(j))j
2

1
A

1=2

6 2�n�1M(n)�1 +
1X

r=n+1

2�2r�4m(r)�1 6 2�nM(n)�1:

Thus writing
E(k; n) = ft : jGk;n(t)j > 1g;

we have, by Chebychev’s theorem, jE(k; n)j 6 2�nM(n)�1 and, if we set

E 0(n) = E(n)

M(n)[
k=1

E(k; n);

we have, by (iv)n,
jE 0(n)j 6 2�n+1

and by (iii)n

max
16k6M(n)

������
p(k;n)X
j=1

f̂(�(j))��(j)(t)

������ > 2n � 2

for all t 2 E 0(n). The theorem follows.

The reader may readily check that Theorem 15 may be obtained by very similar arguments
as can the following direct generalisation of Theorem 5

THEOREM 25. Let (X; �) be a compact Hausdorff space. Let (X;F ; �) be a regular
non-atomic probability space. Let �1, �2, . . . form a Riesz basis for L2(�). Then there exists
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a real continuous f and a bijection � : N ! N such that

lim sup
N!1

�����
NX
u=0

f̂(�(u))��(u)(t)

����� =1:

for almost all t 2 X .

5. Further Questions

It is natural to ask if our results can be improved so as to replace ‘divergence almost ev-
erywhere’ by ‘divergence everywhere’. The obvious answer is no, since if we take a complete
orthonormal system �n on [0; 1) and define ~�n by ~�n(t) = �n(t) for t 6= 0, ~�n(0) = 0 the
result remains a complete orthonormal system but any linear combination of a finite set of ~�n
will take the value 0 at zero.

The “unfair” example just given means that we must reformulate our question and sug-
gests that, at least initially, we should consider particular complete orthonormal systems. In
the case of Fourier series we recall the remarkable theorem of Kahane and Katznelson that
every set of measure zero is a set on which the Fourier sum of a continuous function diverges
(see e.g. [4], Chapter II, Section 3) and consider the following sequence of lemmas.

LEMMA 26. Given any � > 0, any K > 1 and any integer N > 1 we can find a
trigonometric polynomial P , a set E which is the union of a finite set of intervals and a
bijection � : N ! Z such that

(i) jjP jj1 6 1,
(ii) P̂ (n) = 0 for all n 6 N ,

(iii) maxk>0 j
P

j6k P̂ (�(j)) exp(i�(j)t)j > K for all t =2 E.
(iv) jEj < �.

PROOF. Apply de la Vallée Poussin summation to Theorem 23 (with the exponentials
exp(2�int) as the Riesz basis) to obtain a P satisfying all the conditions except possibly (ii).
To obtain (ii) it suffices to replace P (t) by exp(iMt)P (t) with M a suitable large positive
integer.

LEMMA 27 (Kahane and Katznelson). Given any K > 1 there exists an �(K) with the
following property. Given any set E which is the union of a finite set of intervals and has
jEj < �(K) and any integer N > 1 we can find a trigonometric polynomial P such that

(i) jjP jj1 6 1,
(ii) P̂ (n) = 0 for all n 6 N ,

(iii) maxk>0 j
P

j6k P̂ (j) exp(ijt)j > K for all t =2 E.

PROOF. See [4], Chapter II, Section 3.

Combining the last two lemmas we obtain the following result.
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LEMMA 28. Given any � > 0, any K > 1 and any integer N > 1 we can find a
trigonometric polynomial P and a bijection � : N ! Z such that

(i) jjP jj1 6 1,
(ii) P̂ (n) = 0 for all n 6 N ,

(iii) maxk>0 j
P

j6k P̂ (�(j)) exp(2�i�(j)t)j > K for all t 2 T.

It is now easy to prove the desired result.

THEOREM 29. We can find a continuous function f : T ! C with f̂(n) = 0 for n < 0

and a bijection � : N ! N such that

sup
k>0

j

X
j6k

f̂(�(j)) exp(2�ijt)j =1

for all t 2 T.

If instead of considering complex valued functions and the orthonormal system exp 2�int,
we wish to consider real valued functions and the orthonormal system formed by sin 2�nt
and cos 2�nt then we can replace the P of Lemma 28 by <P + =P and first sum the
cos 2��(j)t terms and then the sin 2��(j)t terms. The existence of a continuous function
whose rearranged Fourier series diverges everywhere was first proved by L. V. Taı̆kov [10]
using Olevskiı̆’s theorem in a different way.

So far as I know the general question remains open. In particular we may ask the follow-
ing question.

QUESTION 30. Consider the Haar system on [0; 1) ordered in some way. Does there exist
a continuous function f : [0; 1]! C and a bijection � : N ! N such that

sup
k>0

�����
kX

j=0

a�(j)��(j)(t)

����� =1

for all t 2 [0; 1)?

We remark that a similar proof to the one above (replacing the non-trivial lemma of Ka-
hane and Katznelson by a trivial parallel lemma) gives the following.

LEMMA 31. Consider the Haar system on [0; 1) ordered in some way. There exists a real
f 2 L2 and a bijection

� : N ! N

such that

sup
k>1

�����
kX

j=1

f̂(��(j))��(j)(t)

����� =1

for all t 2 [0; 1).
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The method of proof applies to any ‘well behaved’ system (though the ‘unfair example’
with which we began the section shows that it can not apply to all Riesz bases).

6. Hard summation

The reader with more practical interests will observe that striking as Kolmogorov’s the-
orem and its generalisations may be, they do not answer the question in the case of any par-
ticular rearrangement. Let us return to the question we started with but apply it to a general
othonormal system �1, �2, . . . . If f 2 L2 we consider

SÆ(t) =
X

jf̂(n)j>Æ

f̂(n)�n(t)

where f̂(n) = hf; �ni is the usual Fourier coefficient for the given system. This method of
forming a sum is called ‘hard summation’ and, as we said at the beginning of the talk, is a
very natural one to use.

(The reader may well ask what ‘soft summation’ is. Here we consider something like

�Æ
X

jf̂(n)j>Æ

f̂(n)�n(t) +
X

Æ>jf̂(n)j>Æ=2

jf̂(n)j � Æ=2

Æ=2
f̂(n)�n(t):

I suspect that the idea of soft summation derives from the use of Cesàro sums and similar
filtering techniques to improve the behaviour of Fourier sums. I also suspect that the anal-
ogy is false since I know of no reason why soft summation should behave better than hard
summation. However, this is merely opinion, and like all opinion liable to be disproved by
fact.)

In [5] I constructed the following example.

THEOREM 32. There exists a f 2 L2(T) such that

lim sup
�!0+

������
X

jf̂(u)j>�

f̂(u) exp 2�iut

������ =1:

for almost all t 2 T.

Later in [6] I showed that we could take f continuous.
It therefore came as a great surprise to me to learn that Tao had proved the following

theorem

THEOREM 33. hard summation works for well behaved (rapidly decreasing) wavelets.

Still more surprising was the simple nature of his proof. In order to show how it works I
will prove it in a special case where the argument is particularly clean.
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THEOREM 34. Consider the Haar system on T. If f : T ! C is continuous thenX
jf̂(�)j>�

f̂(�)�! f

uniformly on T.

[The exceptionally good behaviour of the Haar system means that just as in some sense
it is the hardest to prove a Kolmogorov type theorem for, so it is in some sense the easiest to
prove a Tao type theorem for. However, I think all the essential ideas can be seen even in this
simple special case.]

The reader should notice that we now use a different normalisation for the Haar functions
since we want an orthonormal system in which h�; �i = 1. We shall return to this point when
we consider Lemma 37.

Tao’s idea is to use one of the key characters in 20th century harmonic analysis — the
maximal function. If we write

PNf(t) =
X

rank(�)6N

f̂(�)�(t)

S�f(t) =
X

jf̂(�)j>�

f̂(�)�(t)

then corresponding maximal functions are

P �f(t) = sup
N>0

jPN(f)(t)j

S�f(t) = sup
�>0

jS�(f)(t)j:

Since the Haar system is so well behaved P � is easy to bound.

LEMMA 35. jP �f(t)j 6 kfk1.

PROOF. Observe that PNf(t) is piecewise constant with PNf(t) taking the average value
of f on the interval of the form [q2�N ; (q + 1)2�N) to which t belongs. Thus jPNf(t)j 6
kfk1 for all N and so jP �f(t)j 6 kfk1.

In general maximal functions are not so easy to bound and the main work of the proof of
Tao’s result lies in obtaining a bound for S�.

THEOREM 36. There exists a constant K such that if f : T ! C is continuous then

jS�f(t)j 6 Kkfk1:

PROOF OF THEOREM 34 FROM THEOREM 36. Let � > 0. Then, since PNf(t) ! f
uniformly we can find an M such that kPMf � fk1 < �. Set g = f � PM(f). We observe
that ĝ(�) = 0 if rank� 6 N and ^PM(f)(�) = 0 if rank� > N + 1.
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Let Æ0 = 1 if PM(f) = 0 and set

Æ0 = minfj ^PM(f)(�)j ; ^PM(f)(�) 6= 0g

otherwise. If Æ0 > Æ > 0 we have

SÆ(f) = PM(f) + SÆ(g)

and so

kSÆ(f)� fk1 6 kPM(f)� fk1 + kSÆ(g)k1 6 � + S�(g) 6 (K + 1)�

using Theorem 36. Since � was arbrary the result follows.

In the proof of Theorem 36 we look out for ways in which (well behaved) wavelets differ
from their Fourier counterparts. The first is that although the Riemann Lebesgue lemma
represents the strongest statement we can make about the decrease of Fourier coefficients,
much stronger results hold for wavelets.

LEMMA 37. If f : [0; 1]! C is continuous and � has rank n then

jf̂(�)j 6 kfk12�n=2

PROOF. Direct calculation gives

jf̂(�)j =

����
Z
supp�

f(t)�(t) dt

���� 6 kfk1k�k1j supp�j

= kfk12n=22�n = kfk12�n=2:

Note how the normalisation of � comes into the calculation.

The second and best known difference is the localisation property of wavelets. This will
play an important role in our estimate of the maximal function S �f .

PROOF OF THEOREM 36. . It is suficicient to show that if kfk1 = 1, and 1 > Æ > 0

then jSÆ(f)(t)j 6 K for some fixed K. To this end, choose n so that 2�n=2 > Æ > 2�(n+1)=2

and observe that by Lemma 37 this means that jf̂(�)j < Æ for rank� > n.



124 T.W. Körner / Does Order Matter

Thus

jSÆ(f)(t)j =

������Pn(f)(t)�
X

rank�6n; jf̂(�)j<Æ

f̂(�)�(t)

������
6 jPn(f)(t)j+ j

X
rank�6n; jf̂(�)j<Æ

f̂(�)�(t)j

6 P �(f)(t) + Æ
X

rank�6n

j�(t)j

6 kfk1 + Æ
X

rank�6n

j�(t)j; �(t) 6= 0

6 1 + Æ
nX
0

2r=2

since exactly one � of each rank is non-zero at t (this is an extreme version of the localisation
property of wavelets).

Doing some simple calculations we have

jSÆ(f)(t)j 6 1 + Æ
nX
0

2r=2 6 1 +
Æ2(n+1)=2

21=2 � 1
6 1 +

21=2

21=2 � 1
;

which is an inequality of the required form (with K = 1 + 21=2=(21=2 � 1)).

To extend beyond continuous functions we need to use the Hardy-Littlewood maximal
operator

Mf(t) = sup
r>0

1

2r

Z
t+r

t�r

jf(x)j dx:

If we do so, we get pointwise convergence almost everywhere for f 2 Lp [1 6 p 6 1] for
the Haar system.

We end by stating Tao’s general theorem from [9]. He works on R which is a more useful
space than T.

THEOREM 38 (Tao). We work on R. Suppose � has integral zero, and is bounded and
rapidly decreasing. Suppose that the set of functions (wavelets) given by

�j;k(x) = 2j=2�(2j(x� k))

form an orthonormal system. Then, if f 2 Lp(R) [1 < p <1], we haveX
jf̂(�j;k)j>�

f̂(�j;k)�j;k(x)! f(x)

almost everywhere as �! 0+.
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