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ABSTRACT. This is an expository paper, with an emphasis on the history of the sub-
ject. It consists of three main parts:

history, terminology, and examples (Sections 1 and 2),
functions and series (Sections 3, 4, and 5),
thin sets (Sections 6, 7, 8, 9, and 10).

I chose the topics and references according to my own interest, but I decided not to
develop what I wrote recently elsewhere [28], so that I was very brief at the end, in
particular, on topics I like best.

1. Lebesgue, Baire, and trigonometric series

Lebesgue’s measure theory and Baire’s category theorem are both a hundred years old
[1,2,43,48]. From the very beginning, they were linked with trigonometric series. Baire was
inspired by series of continuous functions: His book “Leçons sur les fonctions discontinues”
begins with the example of functions defined as sums of everywhere convergent trigonometric
series, the main object of Riemann’s thesis on trigonometric series [3, 53]. The theory of the
Lebesgue integral, as we now know it, was first presented in Lebesgue’s book “Leçons sur
les séries trigonométriques” [44]. Both books resulted from courses given at the Collège de
France. Baire and Lebesgue had been elected “Peccot lecturers,” which was an opportunity
given to young mathematicians to address younger students. In fact, Denjoy attended Baire’s
lectures and wrote part of Baire’s book (1905), and Fatou attended Lebesgue’s lectures and
contributed to Lebesgue’s book. Fatou wrote his thesis, “Séries trigonométriques et séries de
Taylor,” at the same time (1906) [14].
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The relation between harmonic analysis and integration theory is completely natural,
since the first instance of harmonic analysis is the computation of Fourier coefficients us-
ing the Fourier formulas, and these formulas involve an integral. The integral in question
was not the same for Dirichlet, Riemann, Lebesgue, and Denjoy, but it was either applied
(in the case of Dirichlet and Lebesgue) or designed (in the case of Riemann and Denjoy)
for the specific purpose of giving a sense to the Fourier formulas. In particular, the second
Denjoy totalization was invented specifically to compute the Fourier coefficients of functions
considered by Riemann, namely, the sums of everywhere convergent trigonometric series.
Riemann stated, without giving a proof, that the coefficients must to tend to zero. Cantor
proved this, and moreover, he proved that the coefficients are well defined when the function
is given. (This is Cantor’s uniqueness theorem.) Denjoy, using the Lebesgue integral, the
Baire category theorem, and the transfinite induction of Cantor, provided a way to compute
these coefficients. This work was sketched in a Comptes-rendus note in 1921 and was later
developed in a series of books between 1941 and 1949 [9, 10].

This Denjoy integral, called “the second totalization” (the first was intended to compute
the primitive of the most general derivative [8]), is worth mentioning here because it involves
both the Lebesgue integral, which is the prototype of a probability measure, and the Baire
category theorem. Furthermore, it performs the most elementary step of harmonic analysis
perfectly. However, the Denjoy integral plays no role in the rest of the paper. What is needed
from now on is Lebesgue measure on [0; 1], or any equivalent notion of a probability measure,
and the Baire theorem expressed as follows:

Baire’s category theorem. Let X be a complete metric space, and let Gn, n = 1; 2; : : :, be
a sequence of dense, open subsets of X . Then the intersection of the Gn, \1

n=1
Gn, is dense

in X . (\1
n=1

Gn is a GÆ set.1)

Note that Baire could not express his theorem in these terms; the notions of metric
space and complete metric space appeared later. They appear at the very beginning of Ba-
nach’s book, “Théorie des opérations linéaires” (1932), and they are followed immediately
by Baire’s theorem [4]. The Polish mathematicians of that time were experts in using Baire’s
theorem in a variety of situations. It is used in Banach’s book to prove the Banach–Steinhaus
theorem, which was a new way to look at the old “principle of condensation of singulari-
ties.” In turn, the Banach–Steinhaus theorem is used to show that there exists a continuous
function whose Fourier series diverges at a point, the du Bois–Reymond phenomenon [11].
I discovered the power of Baire’s theorem in harmonic analysis when Katznelson used it to
prove that only analytic functions operate on the Wiener algebra, A(T) = F l1(T), the space
of continuous functions on T whose Fourier series converge absolutely. This result is the
converse of the Wiener–Lévy theorem, which asserts that analytic functions do operate on
the algebra A(T) [34].

1Any countable intersection of open sets is called a GÆ set, and any countable union of closed sets is called
an FÆ set
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I shall not develop the complete role of measure and topology in harmonic analysis, but
rather consider how they are involved in several specific questions.

2. Almost sure and quasi sure; examples

In the terminology of Baire, the countable unions of nowhere dense sets are called sets
of the first category. In Bourbaki’s terminology, they are called meager sets. They are the
analogues of null sets in measure theory.

The complements of sets of the first category (meager sets) are called sets of the second
category. They are the analogues of sets of full measure, and they can be defined as sets that
contain a dense GÆ set. When a property holds on a dense GÆ set it is called generic or quasi
sure. This is the analogue of almost sure in probability theory. We also say that the property
holds quasi everywhere, the analogue of almost everywhere, or that it is enjoyed by quasi all
points, which is the analogue of almost all. The abbreviations q.s. and q.e. are parallel to a.s.
and a.e.

The analogy goes further. There is a theorem by Kuratowski and Ulam that is analogous
to Fubini’s theorem, and it is convenient for us to state it in the following form:

The Kuratowski-Ulam theorem [28]. LetX and Y be Baire spaces (for example, complete
metric spaces). Suppose, moreover, that Y is separable, that is, there is a countable base of
open sets. Let A be a dense GÆ set in X � Y . For each x 2 X , define A(x; �) = fy 2 Y j
(x; y) 2 Ag. Then A(x; �) is a dense GÆ set in Y for quasi all x 2 X .

It is important to realize that almost sure and quasi sure properties can be very different,
that null sets can be sets of the second category, and that sets of full measure can be meager
sets. Here are a few examples.

1. Let X = f�1; 1gN. X is both a complete metric space and a probability space, when
equipped with the usual probability. Let (cn), n 2 N , be a positive sequence, and consider
the series

P�cn indexed by (�) 2 X . ThenX
�cn converges a.s. ()

X
c
2

n
<1;X

�cn converges q.s. ()
X

cn <1:

The first result is a theorem of Rademacher, Khintchin, and Kolmogorov. The second is an
easy exercise: When

P
cn =1, the subset Y of X on which some partial sum of each seriesP�cn, (�) 2 Y , exceeds a given number N , is open and dense. Therefore the series is

divergent on a dense GÆ set of X . In other words, the series
P�cn diverges q.s. as soon as

any one of them diverges.

2. Let X = f�1; 1gN as before, but now consider the Dirichlet series
P1

n=1
�n�s,

s = � + it. These series converge when � > 1. We write f(s) either for their sum when
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� > 1 or for their analytic continuation. Choosing (�) 2 X , the natural boundary of f(s) is
the line � = 1 q.s. and the line � = 1=2 a.s.

It is more interesting to consider
P1

n=1
�((2n � 1)�s � (2n)�s), with (�) 2 X . Then

the natural boundary of the corresponding function, which we denote by f1(s), is � = 0 q.s.
and � = �1=2 a.s. Furthermore, the order of f1(s),

�(�) = finf a j f(� + it) = O(jtja); jtj ! 1g;
is (1 � �)+ = maxf0; 1 � �g on (0;1) q.s. and (1=2 � �)+ a.s. If the difference (2n �
1)�s � (2n)�s is replaced by the differences of higher orders,�

(4n� 3)�s � (4n� 2)�s)
�
�
�
(4n� 1)�s � (4n)�s

�
;�

(8n� 7)�s � (8n� 6)�s)
�
� � � �+

�
(8n� 1)�s � (8n)�s

�
;

and so on, we obtain functions f2(s), f3(s); : : :, that are defined on larger and larger domains.
The functions f1(s), f2(s), f3(s),. . . are all of the form

P1
n=1

�n�s for � > 1, although the
domain of the coefficients (�) becomes restricted as the process continues. Furthermore,
�(�) = (1 � �)+ q.s. and �(�) = (1=2 � �)+ a.s. on R where these functions are defined.
By taking successive blocks of terms from the series representing the functions f1(s), f2(s),
f3(s); : : :, it is possible to define an entire function f1(s) that it is represented by a series
of the form

P1
n=1

�n�s when � > 1, and such that �(�) = (1 � �)+ q.s. and �(�) =
(1=2� �)+ a.s. on (�1;1). Many variations are possible, and the quasi-sure constructions
play an important role in the study of convergence and summability properties of products of
Dirichlet series [23, 32, 51].

3. Let X = T and consider the Hardy-Weierstrass function

f(t) =
1X
n=1

2�n cos(2�2nt):

Geza Freud made a careful study of this function. First, as already noticed by Hardy, it is
nowhere differentiable. However, �f(t) = f(t + h) � f(t) is O(jhj) as h ! 0 for some t,
called slow points. Actually, the set of slow points is both a null set and a meager set, but
it has Hausdorff dimension 1. The modulus of continuity of f is O(h log 1

h
), meaning that

j�f(t)j < Cjhj log 1

jhj for all t. However, there are rapid points t such that

lim
h!0

j�f(t)j
jhj log 1

jhj
> 0;

and indeed, quasi all t are rapid points. On the other hand,

0 < lim
h!0

j�f(t)j
jhj
�
log 1

jhj log log log
1

jhj
�
1=2

<1

for almost all t.
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We see from these examples that the Baire approach emphasizes divergence, singularities,
and large values, while the probabilistic approach favors convergence, smoothing, and regu-
larizing effects. We shall encounter these ideas throughout the paper. However, the first effect
of both approaches is to convert rather strange phenomena into familiar ones, to tame mon-
sters, or to generate monsters in a familiar way. I shall illustrate this aspect by considering
nondifferentiable continuous functions and noncontinuable Taylor series, before considering
other questions.

3. Nowhere-differentiable functions

Nowhere-differentiable continuous functions and noncontinuable Taylor series (i.e., ana-
lytic functions whose domain of existence is a disc) were both discovered by Weierstrass. I
remind you of what Hermite said about nowhere-differentiable functions in a letter to Stielt-
jes: “Je me détourne avec horreur et effroi de cette plaie lamentable des fonctions continue
qui n’ont pas de dérivée.”

Nevertheless, such functions attracted the attention of the physicist Jean Perrin when he
observed the trajectories of Brownian particles, and they became part of Wiener’s program to
build a mathematical theory of Brownian motion, where the realizations are a.s. continuous
and nowhere differentiable. Wiener quoted Jean Perrin several times, and his program was
only achieved in 1933 with the help of Paley and Zygmund. Nowadays the local behavior
of Brownian motion—replete with the concepts of a strong form of nowhere differentiability,
modulus of continuity, average behavior (law of the iterated logarithm), rapid points, and
slow points—is well understood (see [24] or [29] for references).

The same is true for the Baire point of view. Let us consider C(I), the space of real
continuous functions on the interval I = [0; 1]. Given any sequence An ! 0 and an integer
�, the set of f 2 C(I) with the property that

9n > � : 8k(= 0; 1; : : : ; n� 1);
1

n

���f�k + 1

n

�
� f

�
k

n

���� > An

is a dense, open subset of C(I), which we denote by G� . If f 2 \1
�=1

G� , then

lim
h!0

jf(t+ h)� f(t)j
'(jhj) =1 for all t 2 [0; 1]

whenever ' is an increasing function such that '(1=h) = o(An) as n ! 1. This is a very
strong form of nowhere differentiability. In particular, the Hölder exponent of quasi all f is 0
at every point. Quasi surely in C(I), the multifractal analysis is trivial. To have an interesting
multifractal analysis as a generic phenomenon, more restricted classes of functions should be
considered, as Stéphane Jaffard has done [17].
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4. Random Taylor series: continuation, convergence, and divergence

Weierstrass used a lacunary trigonometric series to construct a continuous nowhere-dif-
ferentiable function. Later, he constructed a noncontinuable Taylor series using the same
idea. Poincaré and Hadamard also used lacunary Taylor series to construct noncontinuable
functions. Then, in 1896, Borel issued a strange statement, namely, that in general, a Taylor
series is not continuable across its circle of convergence.

Borel had in mind a probabilistic interpretation of this statement. He spoke of arbitrary
coefficients (coefficients quelconques) and clearly thought of random, independent phases.
In fact, he stated and used a first version of the Borel–Cantelli lemma for that purpose. But
Borel’s theory of countable probabilities was not yet born, and “in general” could not have a
precise meaning in 1896.

Steinhaus gave a rigorous interpretation of probabilistic concepts by means of Lebesgue
measure on I = [0; 1]. Using binary expansions, he first transferred Lebesgue measure to the
space f0; 1gN, then to the same space written as f0; 1gN2 , and finally to IN . In this way he
obtained the so-called Steinhaus sequences (!n) 2 I

N , for which he proved a zero-one law.
Then, by considering random series

(S)
1X
n=0

ane
2�i!n

z
n
; lim

n!1
a
1=n

n
= 1;

it was not difficult to prove that noncontinuation holds almost surely (1923, 1929, [54, 55]).
Paley and Zygmund proved the same result for Rademacher Taylor series

(R)
1X
n=0

�anzn

in 1932. They also considered random trigonometric series, and this was the beginning of
the theory of random series of functions. In 1933, Wiener joined them and proposed to
study Gaussian series, such as the Wiener Fourier series of Brownian motion, in parallel with
Steinhaus or Rademacher trigonometric series. To make the notation simpler, I shall consider
only Gaussian Taylor series

(G)
1X
n=0

�nanz
n
;

where the �n 2 C are independent, normalized Gaussian random variables. When z = e
2�it,

(S), (R), and (G) appear as random trigonometric series with only positive frequencies. The
history of these series, culminating with the work of Marcus and Pisier, can be found in
the second edition of my book “Some Random Series of Functions” (1985) [24]. Roughly
speaking, it was known in 1933 that the series (S), (R), and (G) represent a.s. functions in
H

1, H2, and Hp with p < 1, if and only if
P janj2 < 1. Marcus and Pisier established

that uniform convergence in the closed unit disc has the same probability, 0 or 1, for series
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(S), (R), and (G), and in this way reduced the study of uniform convergence of Rademacher
Taylor series to the same, but more tractable, problem involving Gaussian processes.

Nevertheless, not all results are the same for the series (S), (R), and (G). An interesting
example is the problem of divergence everywhere at the boundary of the unit disc, which was
considered by Dvoretzky and Erdős [23]. The condition

(*) lim
n!1

1

logn
ja1 + a2 + � � �+ anj > 0

implies that each of the series (S), (R), and (G) diverges everywhere on the circle jzj = 1
[24]. But there are series (R) that converge somewhere, while the corresponding (G) diverges
everywhere. It suffices to choose

(R) :
1X
j=0

��jz4
j

and (G) :
1X
j=0

gj�jz
4
j

;

where gj = �4j , �j = o(1), limj!1 �j

p
log j = 1, and limj!1�jjgjj = 1 a.s. This

example also shows that logn cannot be replaced by any o(logn) in condition (*). (See the
Paley–M. Weiss theorem in Section 7.)

Divergence everywhere raises apparently difficult questions. Is it true that the probability
of everywhere divergence increases when we increase the moduli of the coefficients? The
corresponding questions for convergence everywhere, convergence almost everywhere, and
divergence almost everywhere (decreasing or increasing the moduli of the coefficients, ac-
cording to the case) have positive answers. The question can be considered for other series
of functions, for example, for random trigonometric series or for random Walsh series.

Other problems arise when we consider the properties of analytic functions defined by
the series (R), (S), or (G). Does their range cover the plane C and by how much? The answer
is fairly precise for (G), but it is still incomplete for (R) and (S) (references can be found
in [27], p. 267).

5. Generic trigonometric and power series

Let me turn to another interpretation of Borel’s statement on the noncontinuation of Tay-
lor series as a generic phenomenon. Let H(D) denote the space of analytic functions defined
on the unit disc D = fz j jzj < 1g and endowed with the topology of uniform convergence
on compact subsets of D. Let X be a complete metric space consisting of analytic functions
defined on D such that the mappings f 7! f

(n)(z) are continuous from X to C whenever
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n 2 N and z 2 D. Given a 2 D, r > 0, and A 2 N , let

G(a; r; A) =
n
f 2 X

��� 1X
n=0

1

n!
jf (n)(a)jrn > A

o
;

J(a; r) =
\
A>0

G(a; r; A) =
n
f 2 X

��� 1X
n=0

1

n!
jf (n)(a)jrn =1

o
:

The G(a; r; A) are open, and J(a; r) is a GÆ set. Define

J =
\
a;r

J(a; r);

where the coordinates of a and r are rational and r > 1 � jaj. Then J is also a GÆ set, and
the functions f belonging to J are not continuable across the circle jzj = 1.

It follows that quasi all f inX are noncontinuable as soon as, given any domain 
 strictly
larger than D, the set of f that cannot be continued analytically on 
 is dense in X . In par-
ticular, functions represented by (R), (S), or (G), as well as functions belonging to H(D),
are quasi surely not continuable across the circle. This result is due to Kierst and Szpilrajn
for H(D) [39], and it can be extended in a number of ways, by replacing D with any other
domain in C or C d , in the following form: Either all functions belonging to the space under
consideration can be extended in the same larger domain, or quasi all functions are noncon-
tinuable [28].

Article [28] contains many generic properties of trigonometric and Taylor series. Let me
quote a few of them.

1. X = C(T). The partial sums Sn(f; t) of the Fourier series of quasi all f satisfy

lim
n!1

1

!n

Sn(f; t) =1 quasi everywhere

whenever 0 < !n = o(logn) as n!1.

2. X = L
1(T). The partial sums Sn(f; t) of quasi all f satisfy

lim
n!1

1

�n

Sn(f; t) =1 everywhere

whenever 0 < �n = o

� p
log np

log log n

�
as n!1. (This is the generic Konyagin theorem [40].)

3. X = H(D). Given any open subset of D, say �, such that the boundaries of D and �
have at least one point in common, quasi all f satisfy

f(ei��) = C for all � 2 R :

4. X = H(D). The Taylor series of quasi all f satisfy the Nestoridis universality prop-
erty: Given any compact set K in fz j jzj > 1g such that C n K is connected, and given
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any function F that is continuous on K and analytic in its interior, there exists a sequence of
partial sums that converge to F uniformly on K [47]. As a corollary, one can show that every
continuous function on fz j jzj = 1g is a pointwise limit of some sequence of partial sums.

5. X = c0(N). Quasi all Fourier Taylor series
P1

n=0
ane

2�int, (an) 2 X , have the
Menchoff universality property: Every Lebesgue-measurable function F (e2�it) is a limit of
some sequence of partial sums almost everywhere [31].

6. Thin sets and function spaces

The last part of this paper concerns thin sets inZ and T. “Thin” refers to properties related
to trigonometric series. Furthermore, the thin sets we consider in Z are lacunary, and the thin
sets we consider in T are closed and have zero Lebesgue measure.

Probability methods have proven to be quite efficient for the study of thin sets in Z,
however, so far, I know of no use of the Baire theory in this context. On the other hand, both
probability methods and Baire’s method are actively used for exhibiting properties of thin
sets in T. As one would expect, the results obtained by the two methods are quite different
and often go in opposite directions. A way to relate them was discovered by Körner; it will
be sketched at the end of the paper.

The first use of thin sets of integers was made by Hadamard for studying lacunary Tay-
lor series. Assuming that (�n) is an increasing sequence of positive integers such that (*)
�n+1=�n > q > 1 for all n, he showed that all series

P1
n=0

anz
�n
n

with a finite, nonzero
radius of convergence are noncontinuable. Condition (*) is far from being the best for this
kind of result. However, (*) plays a role in a number of questions in harmonic analysis. It is
called the Hadamard lacunary condition.

Let me proceed with the definitions. C(T), Lp(T) (1 6 p 6 1), c0(Z), and l
p(Z)

(1 6 p 6 1) have the usual meaning. Cas(T) is the subspace of L2(T) consisting of
functions f � P

n2Z f̂ne
2�int such that

P
n2Z�f̂ne2�int represents a.s. a continuous func-

tion. Then, according to Marcus and Pisier, the same is true for the Gaussian Fourier seriesP
n2Z�nf̂ne

2�int, where the �n are i.i.d. normalized Gaussian variables, and Cas(T) is a Ba-
nach space using either of the equivalent norms

E




X
n2Z

�f̂ne2�int




C(T)

or E




X
n2Z

�nf̂ne
2�int





C(T)

:

The Pisier algebra is C(T) \ Cas(T). A(T) = F l1(Z) is the Wiener algebra, which is the
subspace of those functions in C(T) whose Fourier series converge absolutely (see Section
1). The space of Radon measures on T is denoted by M(T), and the cone of probability mea-
sures is denoted by M+

1
(T). The pseudomeasures are linear forms on A(T), in other words,

Schwartz distributions on T whose Fourier coefficients are bounded. The space of pseu-
domeasures, F l1(Z), is denoted by PM(T). Pseudofunctions are pseudomeasures whose
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Fourier coefficients tend to 0. The space of pseudofunctions, Fc0(Z), is denoted by PF (T).
The Rajchman measures are at the same time measures and pseudofunctions. We write

M0(T) =M(T) \ PF (T) = f� 2M(T) j �̂(n) = o(1); n! �1g:
We shall also be interested in the classes M�(T), 0 6 � 6 1, defined as

M�(T) = f� 2M(T) j �̂(n) = o(jnj��=2); n! �1g:

7. Sidon and Zygmund sets

Given any family F (T) of functions or distributions defined on T and any subset � of
Z, we write F� for the subfamily of F (T) whose elements have their spectrum in �. Thus,
f 2 F� if and only if

f �
X
n2�

f̂ne
2�int

:

Here is the first and most important definition of a thin set of integers.

D1. � is a Sidon set means that C� = A�.

Equivalent definitions, known already in the 1930s, are cM j� = d
PM j� andcL1j� = dPF j�.

(Here we write bF j� for the space of restrictions to � of Fourier transforms of elements of
F (T); then dPM j� = l

1(�) and dPF j� = c0(�).) The structure of Sidon sets is not yet
clarified. Probability methods have helped, and there have been two approaches: 1) the use
of random functions with a given spectrum, and 2) the use of random sets of integers.

The first method was introduced in 1957 [18, 19] and gave the following result: If � is a
Sidon set, there exists a K > 0 such that given positive integers n and s, every “net” of the
form

N(a1; a2; : : : ; an; s) =
n
a1m1 + a2m2 + � � �+ anmn

��� mj 2 Z;

nX
j=1

jmjj < 2sj
o
;

where the aj are real, contains no more than Kns points of �. It is not known whether this
necessary condition is also sufficient. The triumph of the method is an alternative definition
of Sidon sets, from which the theorem of Drury—the union of two Sidon sets is a Sidon
set—follows immediately:

D2. � is a Sidon set if and only if Cas� = A�.

This is due to D. Rider [52]. The characterizations given by Pisier [49,50] and by Borgain
[6] use the same approach.

The second method was introduced by Katznelson and Malliavin in 1966 [36] in con-
nection with the “dichotomy problem”: For a rather large class of random sets of integers,
� = �(!), either � is a Sidon set or only analytic functions operate on cL1j�. Katznelson
proved the following result in 1972 [35]: In the second case, � is dense in the Bohr group,
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that is, the Bohr compactification of Z. Moreover, he indicated a way to construct Rudin’s
�(p) sets by a random procedure. (� is �(p) means that cL2j�(= l

2(�)) = c
L
pj�.) This was

later developed by Borgain in [7] to obtain �(p) sets that are not �(p+ "). Borgain’s selector
method consists in choosing � as the support of the random measure

P
n2ZXnÆn, where Æn

is the Dirac mass at n, and where the Xn are independent random variables with values 0 or
1 such that EXn = an for some given sequence an, 0 < an < 1. When an = O(1= log jnj),
n ! �1, � is a.s. a Sidon set. When janj log jnj tends to 1, there is a.s. a trigonometric
series

P
�2� c� sin�t that is uniformly, but not absolutely, convergent. New developments

are given in [45].
It is through definition D2 that Sidon sets are related to almost surely everywhere con-

vergent (or equivalently, uniformly convergent) trigonometric series. The Zygmund sets (or
sequences), which I shall define below, are related to almost surely somewhere convergent
trigonometric series, which we have already considered. They originate from a theorem of
Zygmund [57] and a theorem of Paley and Mary Weiss [56] on Hadamard real trigonometric
series and Hadamard Taylor series with coefficients tending to zero. From now on, � will
denote a set of positive integers, ordered increasingly.

D3. � is a Zygmund set whenever every real trigonometric seriesX
�2�

Re(a�e
2�i�t)

with a� = o(1), �!1, converges at some point t 2 T.

D4. � is a Zygmund+ set whenever every Taylor series
P

�2� a�z
� with a� = o(1),

�!1, converges at some z, jzj = 1.

Every Zygmund+ set is a Zygmund set. It is not known if the converse is true. Necessary
conditions for � to be a Zygmund set were given by Erdős [13] and by me [21], and they are
close to the necessary conditions known for Sidon sets. Is every Zygmund set a Sidon set? Is
every Sidon set in N a Zygmund set? These are old questions, hardly considered.

8. Kronecker, Helson, M , and Salem sets

We are now going to consider closed subsets of T. I shall restrict myself to Kronecker
sets, Helson sets, M sets, M� sets with 0 6 � < 1, and Salem sets. Here are the definitions
( [29, 33]).

D5. E (a closed subset of T) is a Kronecker set if each function of modulus 1 that is con-
tinuous on E is the uniform limit of some sequence of imaginary exponentials exp(2�injt).

From now on I shall write C(E) for the Banach space of continuous functions on E and
A(E) for the Banach space consisting of the restrictions toE of functions belonging toA(T).

D6. E is a Helson set if A(E) = C(E).
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An equivalent definition is that the measure norm and the pseudomeasure norm are equiv-
alent for all measures � 2 M(E), that is, measures supported by E. The first theorem about
Helson sets, due to Helson, is that a Helson set carries no nonzero measure belonging to
M0(T) [16]. A long standing question, whether a Helson set can carry a pseudofunction,
was solved positively by T. Körner in 1972 [41]. The best proof uses a probability device of
R. Kaufman [38].

D7. E is an M set if it carries a nonzero pseudofunction, or in our notation, if PF (E) 6=
f0g.

An M set is also called a set of multiplicity because there are infinitely many trigono-
metric series that converge to 0 outside the set. The opposite is called a set of uniqueness. A
Kronecker set is both a Helson set and a set of uniqueness.

D8. E is an M0 set if it carries a nonzero measure � such that �̂(n) = o(1) as jnj ! 1.

Helson’s theorem says that anM0 set cannot be a Helson set; Körner’s construction shows
that an M set can be a Helson set.

D9. E is an M� set if M�(E) 6= f0g, which means that E supports a probability measure
� such that �̂(n) = o(jnj��=2) as jnj ! 1.

It follows from a theorem of Frostman that the Hausdorff dimension of an M� set is> �.

D10. E is a Salem set of dimension � if its Hausdorff dimension is � and if E is an M�

set for every � < �.

9. Random thin sets

Probability methods have been used to obtain Salem sets in different ways. The problem
of finding Salem sets of dimension � for each � between 0 and 1 was suggested by Beurling
[33].

Salem’s construction, apart from probability methods, uses Diophantine approximation,
and it produces sets that have strong arithmetical properties, of the same type as the usual
Cantor sets. This construction is described in [33].

Processes with independent increments, in particular Lévy processes and Brownian mo-
tion, provide Salem sets in a most natural way: The images of a fixed set of dimension �=2
under Brownian motion is a.s. a Salem set [24]. There is an analogue of this result for Lévy
flights [26, 30, 46]. The first result in this direction was suggested by B. Mandelbrot when he
became interested in the “Lévy dust.” Here is the result. Recall that any stationary increasing
process with independent increments, a Lévy flight, is a mapping X : R+ � 
 ! R

+ that
satisfies the following properties: For almost all !, X(t; !) is an increasing function of t,
it is continuous to the right, and X(0; !) = 0 for all !. Furthermore, for each choice of
0 6 t1 6 t2 6 � � � 6 tn, the random variables X(tj+1; �)�X(tj; �), j = 1; 2; : : : ; n� 1, are
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independent and their law depends only on tj+1 � tj . The “ function” associated with this
process is defined by the equation

Ee
iuX(t) = e

�t (u)
; X(t) = X(t; �);

and the law of the process depends only on  . Then the image of the Lebesgue measure on
[0; 1] under X(t) is a random measure � whose Fourier transform is

�̂(u) =

Z
1

0

e
iuX(t)

dt:

Writing
h(u) = inf

jxj>u
Re (x);

one gets successively

Ej�̂(u)j2p 6 (2p)! 2p

p! (h(u))p
;

and

�̂(u) = O

 s
logu

h(juj)

!
; juj ! 1; a.s.

The last steps are copied from Salem [33]. The definition of h(u) as inf j (x)j given in [30]
and [26] is incorrect. The correction is due to A. Benchérif–Madani (see [5], p. 87). In
particular, for stable Lévy processes of index �,  (u) = cu

�, where c is complex, and the
support of �, transported to T, is a Salem set a.s.

It can be expected that most “naturally occurring” random sets are Salem sets. In partic-
ular, level sets of fractional Brownian motions should be Salem sets. This is true for ordinary
Brownian motion because the level set starting from 0 coincides with the closure of the range
of a Lévy process of index 1=2. The measure to be considered is now Æ(X(�)). The method
is at hand in the last chapter of [24], but it was never carried out.

Examples of sets where spectral synthesis fails on the line R were first given by Malliavin.
His idea was to construct a function f 2 A(T) and a pseudomeasure defined formally as
Æ
0(f), where Æ0 is the derivative of the Dirac measure. When hÆ0(f); fi 6= 0, the set f�1(0)

does not permit spectral synthesis. Level sets of specially constructed Gaussian processes
X(t) have this property: Æ 0(X(�) � x) is a pseudomeasure that cannot be approximated in
the weak topology of PM(T) by measures carried within the support of Æ 0(X(�) � x), with
a positive probability that depends on x. It was noticed that, for these special Gaussian
processes, this pseudomeasure belongs to F lp whenever p > 2 [20]. (The statement in [20]
is: Whatever p > 2, there exists a process: : :. It is easy to obtain: There exists a process
such that, whatever p > 2; : : :.) It is very likely that, for these Gaussian processes, the
pseudomeasure belongs to M�(T), whatever 0 < � < 1=2 (perhaps also for � = 1=2), but it
needs some work to prove this.
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10. Generic thin sets

I shall be brief on Baire’s methods—as introduced by Robert Kaufman [37], developed
in a series of ways, and revived recently by Thomas Körner [42]—because the matter is
treated in [28]. However, it is worth mentioning the power and versatility of Baire’s methods
for obtaining strange closed sets on R or T. (Definitions D5 to D10 extend to R, so I shall
consider R instead of T from now on.)

The first idea is that, contrary to the smoothing effect of random processes, using Baire’s
theorem accentuates the wildest behavior of Fourier transforms: Probability providesM sets,
and even M� sets, as we have seen; Baire provides sets of uniqueness. Actually, Baire’s
theorem is a very good tool for obtaining Kronecker sets [22] or, in several dimensions,
Helson curves and surfaces. That at least was my personal philosophy until 1993.

Then T. Körner discovered that his Helson–M sets (so strange!) and also Salem sets (so
far from Kronecker!) are also generic if suitable Baire spaces are chosen [42]. His ideas for
the construction of Salem sets are expounded in [28]. Probability does not disappear, but it is
reduced to a technicality.

In [42], Körner called Baire’s theorem “a profound triviality.” Its proof is trivial, and
its use by Kaufman and Körner is profound. The use of probability methods relies on long
experience in analysis and on the stochastic processes that we have at hand. To apply Baire’s
theorem, the first point is to discover the right Baire space; the second step is to chose the right
open sets. It is a good way both to render strange objects generic and to find new phenomena.

I wish to thank Robert Ryan for a careful reading of this paper.
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[4] S. Banach. Théorie des opérations linéaire. Z subwencji Funduszu kultury narodowej (Monografjie

matematyczne, vol. 1), Warsaw, 1932.
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[9] A. Denjoy. Calcul des coefficients d’une série trigonométrique convergente quelconque dont la somme est

donnée. C.R. Acad. Sci. Paris, 172:1218–1221, 1921.
[10] A. Denjoy. Leçons sur le calcul des coefficients d’une s érie trigonométrique. Gauthier–Villars, Paris,
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