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ABSTRACT. Gabor theory is concerned with expanding signals f as linear combina-
tions of elementary signals that are obtained from a single function g (the window)
by shifting it in time and frequency over integer multiples of a time shift parameter a
and a frequency shift parameter b. In these expansion problems a key role is played
by the Gabor frame operator associated with the set of elementary signals used in the
expansions. The Gabor frame operator determines whether stable expansions exist for
any finite-energy signal f (that is, whether we have indeed a frame), and, if so, gives
a recipe for computing the expansion coefficients by using the canonically associated
dual frame. In this contribution we consider the Gabor frame operator and associated
dual frames in the time domain, the frequency domain, the time-frequency domain,
and, for rational values of the sampling factor (ab)�1, the Zak transform domain. We
thus have the opportunity to address the basic problems – whether we have a Gabor
frame and how we can compute a dual frame – in any of these domains we find, de-
pending on g and a, b, convenient. The representations in the time domain and the
frequency domain are conveniently discussed in the more general context of shift-
invariant systems, and for this we present certain parts of what is known as Ron-Shen
theory, adapted to our needs with emphasis on computational aspects.

This contribution contains many examples, counter-intuitive and confusing re-
sults, statements that one would like to be true but that are not and vice versa, etc., to
show that Gabor theory, despite its rapid development in the last ten years, is still far
from being completed.

1. Introduction

To introduce the subject matter of this contribution conveniently, we start with a survey of
the various origins and early developments of Gabor theory. We do not aim here at a complete
historical account, certainly not for the later developments, but rather refer for this to some
excellent recent and less recent papers and books containing such surveys. Gabor systems
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are systems of functions of a real variable t that are built from a single function g (called the
window) by shifting it in time and frequency over integer multiples of a time shift parameter
a and a frequency shift parameter b. That is, denoting for real x, y by gx;y the time-frequency
shifted version

(1.1) gx;y(t) = e2�iyt g(t� x) ; t 2 R

of g, a Gabor system with shift parameters a, b and window g consists of the functions
gna;mb with integer n, m. We denote this system by (g; a; b). These systems were considered
by Gabor [1] in 1946, with the window g a Gaussian and (ab)�1 = 1, with the aim of
constructing efficient, time-frequency localized, non-redundant expansions of finite-energy
signals as linear combinations of the system’s elements in which the coefficients “represent”
the expanded signal. Gabor’s choice of Gaussian elementary building blocks and densities
a�1, b�1, with product equal to unity was motivated by his desire for non-redundant, unique
expansions that should exist for any finite-energy signal. Indeed, Gaussians uniquely achieve
equality in the uncertainty inequality �t ��f > 1=2 (with the deltas referring to the standard
deviations in the time and the frequency domain, respectively), whence they occupy in a sense
the least amount of area in the time-frequency plane. Furthermore, the setting of Nyquist’s
theorem, saying that band-limited signals are uniquely determined by their sample values at
regularly spaced sample points with the spacing determined by the bandwidth, can be recast
into a limiting case of a Gabor expansion problem, and this suggests to take (ab)�1 = 1 as
critical density when non-redundant expansions have to exist for all signals.

Already much earlier, in 1932, systems (g; a; b) with Gaussian g and (ab)�1 = 1 were
considered by von Neumann [2] in a quantum mechanical context, and, apparently, he estab-
lished the completeness of these systems in L2. For that reason one also finds in the literature
the name von Neumann lattice systems, and also Weyl-Heisenberg systems to emphasize the
underlying continuous Weyl-Heisenberg group of translations in the phase plane, for what we
have called Gabor systems.

Gabor’s 1946 paper certainly did not go unnoticed by the engineering community, but it
was not until 1980 that the attention to Gabor expansions was revived through the work of
Portnoff [3], Bastiaans [4] and Janssen [5]. This revival coincided, not entirely by accident,
with the increasing interest in the electrical engineering community in time-frequency tools,
such as the Wigner-Ville distribution and the short-time Fourier transform. (It should, how-
ever, be noted that as early as 1961 Lerner [6] presented a theory of signal representations
in which Gabor expansions play a dominant role; in [6] one can already find orthogonaliza-
tion procedures reminiscent of what we presently would call the construction of canonically
associated dual frames.) From the von Neumann lattice side, completeness results for the
Gaussian window and (ab)�1 = 1 were already obtained by Perelomov [7] and Bargmann et
al. [8] using the Bargmann transform (and, in [8], the Zak transform in disguised form) and
by Bacry, Grossmann and Zak [9] using the Zak transform.
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Although Perelomov, in [7], already presented some considerations on dual functions, it
was Bastiaans in [4] who analytically computed a dual function for the case of Gaussian g and
(ab)�1 = 1. These dual functions are important since they allow one to exhibit the expansion
coefficients for a particular signal f as inner products of f with the dual function shifted
in a similar way as the window g itself. The mathematical analysis given by Janssen in [5]
and [10] of the convergence properties of Gabor expansions and of Bastiaans’ dual function
showed that Gabor systems with Gaussian g and (ab)�1 = 1 yield unstable expansions that do
not properly reflect time-frequency localization of the signals to be expanded. This point was
also observed by Davis and Heller in 1979 [11]; they suggested to consider Gabor systems
with Gaussian window g and (ab)�1 > 1 (oversampling) and thus obtained expansions with
much better convergence properties.

The interest of mathematicians in Gabor systems dates from around 1980 with Janssen’s
work [5], [10] on the connection between the Bargmann transform, Zak transform and Gabor
expansions, and that of Feichtinger (joined later on by Gröchenig) focusing on the more
functional analytic (modulation spaces) and group theoretic aspects of Gabor expansions [12],
[13]. A major development in the mathematical theory of Gabor expansions was made in
1986 by Daubechies, Grossmann and Meyer [14] who placed the Gabor expansion problem
in the context of frames for a Hilbert space. The latter concept was introduced by Duffin and
Schaeffer [15] in 1951 for addressing completeness and expansion problems involving sets
of exponentials in spaces of band-limited functions. For a Gabor system (g; a; b) one thus
considers the frame operator S, defined for f 2 L2 by

(1.2) Sf =
X
n;m

(f; gna;mb) gna;mb :

By definition, the Gabor system (g; a; b) is a frame when the frame operator S is bounded
and positive definite. In this case, the Gabor system (Æ
; a; b) with

(1.3) Æ
 = S�1g

is also a frame, called the canonical dual frame, and for any f 2 L2 we have the L2-
convergent expansions

(1.4) f =
X
n;m

(f; Æ
na;mb) gna;mb =
X
n;m

(f; gna;mb)
Æ
na;mb :

Many of the research efforts in Gabor theory after 1986 were directed at studying frame
operators, finding criteria for when a Gabor system is a frame, identification of the tight Gabor
frames (for which g and Æ
 coincide, except for a factor), and how to efficiently compute the
canonical dual and the expansion coefficients in (1.4). These problems and their solutions
have attracted many scientists from quite diverse disciplines and fields, such as theoretical
electrical engineering, mathematical physics, Fourier analysis, numerical analysis, complex
function theory, functional analysis, where it should be noted that especially the last field has
increased its share of practitioners considerably over the last few years.
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We have now arrived at a point where we are able to describe the technical content of this
contribution, and so we finish the historical survey by pointing at two basic references for
the developments in Gabor theory (before and) after 1986. These are Ch. 4 of the book [16]
by Daubechies (having an enormous influence on the more recent developments in time-
frequency analysis, and, in particular, Gabor theory) and the book [17], edited by Feichtinger
and Strohmer, which is entirely devoted to Gabor analysis and applications with an extensive
and up-to-date bibliography. For a survey of Gabor theory until 1989 and an excellent tutorial
for both Gabor theory and wavelet theory, one should also consult the survey paper [18] by
Heil and Walnut.

In this contribution we focus on the various representations of the frame operator S
in (1.2). To that end, we first present the basics of frame theory, specialized to Gabor systems
and to the more general shift-invariant systems. For the latter type of systems we provide
our version of certain parts of a theory developed by Ron and Shen [19], [20] where we pay
special attention to the issue of how to compute canonical dual systems. This is applied in
two ways to Gabor systems, yielding a description of the frame bound conditions, the Ga-
bor frame operator, the duality relation (1.4) and a characterization of and a computation
method for the canonical dual function, both in the frequency domain and the time domain.
The representation of the frame operator in the time domain is well known as Walnut’s rep-
resentation [21]. We shall also consider Gabor systems in the time-frequency domain using
spectrograms, and this yields the Tolimieri-Orr-Janssen representation [22], [23] of the Gabor
frame operator with a corresponding description of the frame bound conditions, the Wexler-
Raz biorthogonality condition [24] for the duality relation (1.4), and a characterization of
the canonical dual function as the minimum-energy Wexler-Raz dual. For rational values of
the sampling factor (ab)�1 we can also consider Gabor systems in the Zak transform domain
which yields the Zibulski-Zeevi description [25] of the frame bound conditions, frame opera-
tor, duality relation and characterization/computation of the canonical dual function in terms
of Zak matrices. Each of the four representations just given is potentially useful as a tool for
finding out whether a Gabor system (g; a; b) is indeed a frame, and, if so, offers a means for
computation of (canonical) dual functions in the considered domain.

We conclude this contribution with various counter-intuitive and confusing results, state-
ments that one would obviously like to be true but that are not and vice versa, comments
on the basic and hard problem of when a particular triple (g; a; b) is a Gabor frame, etc. As
examples of this we have the Balian-Low theorem (conflicting with the relaxed attitude of
von Neumann, Gabor himself and Lerner towards completeness, existence and convergence
issues for the Gaussian window Gabor system at critical density) and the beating of this same
Balian-Low phenomenon by considering Wilson systems at critical density; the existence of
a well-behaved, positive g with positive Fourier transform such that (g; 1

2
; 1) is not a Gabor

frame; the difficulties of deciding whether (g; a; b) is a frame with ab < 1 for windows g
as elementary as a Gaussian or the characteristic function of an interval. All this shows that
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Gabor theory, despite the great progress that has been made in recent years, is still far from
being completed, with various basic questions still waiting to be answered.

Almost all results presented here are proved somewhere in the literature; we shall there-
fore omit all proofs and we shall give appropriate references instead. In Secs. 2–6 of this
contribution we follow roughly the developments of Secs. 1.1–5 of [17], Ch. 1; however, the
presentation of the results has been considerably enhanced by adopting a uniform organiza-
tion per section, while some of the results have been worked out in more detail.

2. Basics from frame theory

In this section we present some basic facts from frame theory, with particular attention for
Gabor systems and shift-invariant systems. A shift-invariant system consists of a collection
of functions gnm, n;m 2 Z, of the form

(2.1) gnm(t) = gm(t� na) ; t 2 R ;

where gm 2 L2, m 2 Z, and a > 0. We are interested in finding dual systems 
nm, n;m 2 Z,
with 
nm(t) = 
m(t� na), t 2 R, by which we mean that any f 2 L2 has the L2-convergent
expansions

(2.2) f =
X
n;m

(f; 
nm) gnm =
X
n;m

(f; gnm) 
nm :

For this to be meaningful, we require the two systems to have a finite frame upper bound. A
system gnm, n;m 2 Z, as in (2.1), has a finite frame upper bound when there is a Bg < 1
such that

(2.3)
X
n;m

j(f; gnm)j2 6 Bg kfk2 ; f 2 L2 ;

and any Bg <1 such that (2.3) holds, is called a frame upper bound.
When gnm, n;m 2 Z, has a finite frame upper bound Bg, one can define the operators Tg

(analysis operator) and T �

g
(synthesis operator) by

(2.4) Tg : f 2 L2 ! Tgf = ((f; gnm))n;m2Z2 l2(Z2)

and

(2.5) T �

g
: � 2 l2(Z2)! T �

g
� =

X
n;m

�nmgnm 2 L2 ;

respectively. These Tg and T �

g
are bounded linear operators with operator norm 6 B

1

2

g , and
they are indeed adjoint operators when the standard inner products for L2 and l2(Z2) are
taken. When the system 
nm, n;m 2 Z, has a finite frame upper bound as well, the duality
condition (2.2) can be written as

(2.6) T �

g
T
 = T �



Tg = I ;
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where I denotes the identity operator of L2.
When the system gnm, n;m 2 Z, has a finite frame upper bound Bg, the frame operator

Sg is defined by Sg = T �

g
Tg. Explicitly,

(2.7) Sg : f 2 L2 ! Sgf =
X
n;m

(f; gnm) gnm 2 L2 ;

and there holds Sg 6 BgI . When there is, in addition, an Ag > 0 such that

(2.8)
X
n;m

j(f; gnm)j2 > Ag kfk2 ; f 2 L2 ;

so that Sg is invertible with Sg > AgI , we say that the system gnm, n;m 2 Z, has a positive
frame lower bound, and any Ag > 0 such that (2.8) holds is called a frame lower bound. A
system gnm, n;m 2 Z, having both a finite frame upper bound and a positive frame lower
bound is called a frame. When we have Ag = Bg in (2.3) and (2.8), we say that the frame is
tight, and then we have Sg = AgI = BgI .

When the system gnm, n;m 2 Z, is a frame, a dual system is given by

(2.9) Æ
nm = S�1
g

gnm ; n;m 2 Z ;

and this system is also a frame with frame bounds AÆ
 = B�1
g

, BÆ
 = A�1
g

. Since Sg, and
hence S�1

g
, commutes with all relevant time-shift operators f 2 L2 ! f(� � na) 2 L2,

n 2 Z, we have that

(2.10) Æ
nm = S�1
g

gnm = (S�1
g

gm)(� � na) ; n;m 2 Z :

We have, furthermore, that SgSÆ
 = I , whence SÆ
 is the inverse of the frame operator Sg and
vice versa. The system in (2.9) is called the canonical dual system.

When the system gnm, n;m 2 Z, is a frame, there are, in general, other dual systems

nm, n;m 2 Z, than the canonical dual system in (2.9). When we have two systems gnm,
n;m 2 Z, and 
nm, n;m 2 Z, both with a finite frame upper bound, such that the duality
condition (2.2) with L2-convergence for all f 2 L2 holds, then both systems are a frame. This
can be a useful method for checking whether a particular system gnm, n;m 2 Z, is indeed a
frame, viz. in those cases that one can easily produce a dual system 
nm, n;m 2 Z, that does
not need to be the canonical dual frame in (2.9).

The dual system in (2.9) is special for several reasons. For any f 2 L2 and any � 2 l2(Z2)
with

(2.11) f =
X
n;m

�nmgnm ;

there holds

(2.12)
X
n;m

j(f; Æ
nm)j2 6
X
n;m

j�nmj2 ;
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with equality if and only if �nm = (f; Æ
nm) for all n;m 2 Z. By applying this to the trivial
representation for n;m 2 Z

(2.13) gnm =
X
n0;m0

(gnm;
Æ
n0m0) gn0m0 = gnm +

X
(n0;m0)6=(n;m)

0 � gn0m0 ;

we find that

(2.14) j(gnm; Æ
nm)j2 6
X
n0;m0

j(gnm; Æ
n0m0)j2 6 1 :

A different way to characterize the dual system in (2.9) is as follows. Assume that � 2 l2

is given and that we consider the �nm as noisy/distorted versions of the numbers (f; gnm),
n;m 2 Z, of some f 2 L2. Then an estimate of f can be obtained by minimizing

(2.15) J(f) =
X
n;m

j(f; gnm)� �nmj2 :

When the system gnm, n;m 2 Z, is a frame, this yields for f the unique solution

(2.16) f = S�1
g

�X
n;m

�nmgnm

�
=
X
n;m

�nm
Æ
nm :

In particular, when

(2.17) �nm = Ænn0Æmm0
; n;m 2 Z

with some n0; m0 2 Z (the deltas denote Kronecker’s delta), we obtain f = Æ
n0m0
. For more

generalities about frames and shift-invariant systems we refer to [16], Sec. 3.2, [26], Sec. I.C
and [19], Sec. 1.3.

A particular example of a shift-invariant system arises when we take for m 2 Z

(2.18) gm(t) = e2�imbt g(t) ; t 2 R ;

with b > 0 and g 2 L2. It is customary here to ignore the phase factors in gnm, 
nm, given by
exp(�2�inmab) for n;m 2 Z, when studying duality questions, since these vanish anyway
at the right-hand sides of (2.2). Thus one considers

(2.19) gna;mb(t) = e2�imbt g(t� na) vs. gnm(t) = e2�imb(t�na) g(t� na)

for n;m 2 Z, and one arrives at a Gabor system (g; a; b) as in Sec. 1 with window g and shift
parameters a > 0, b > 0.

In the case of a Gabor frame (g; a; b), the frame operator Sg commutes with all relevant
time-frequency shift operators f 2 L2 ! exp(2�imb�) f(� � na) 2 L2, n;m 2 Z. As a
consequence we have then that

(2.20) Æ
nm = S�1
g

gnm = (Æ
)na;mb

with Æ
 = S�1
g

g the canonical dual window.
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3. Shift-invariant systems

In this section we consider shift-invariant systems gnm, n;m 2 Z, and 
nm, n;m 2 Z,
and we present, in the frequency domain an equivalent condition for a shift-invariant system
to have a finite frame upper bound and to be a frame, a representation result for the frame
operators, an equivalent condition for the two systems to be dual, and a characterization of
and a computation method for the canonical dual system. Many of the results in this section
can be found in [19] by Ron and Shen. However, the presentation of the results we give
here is rather different from the one in [19], and, for instance, the results on frame operator
representation as well as those on the characterization and computation of canonical dual
systems cannot be found in [19], at least not in the form we present them here. For full
details and proofs we refer to [27], Sec. 1.2.

We consider L2 = L2(R) with the standard inner product and norm

(3.1) (f; h) =

1Z
�1

f(t) h�(t) dt ; kfk2 = (f; f) ; f; h 2 L2 :

Furthermore, we denote for f 2 L2 by f̂ = Ff the Fourier transform of f , given as

(3.2) f̂(�) = (Ff)(�) =

1Z
�1

e�2�i�t f(t) dt ; a:e: � 2 R :

With fm 2 L2, m 2 Z, we define the “matrices”

(3.3) Hg(�) := (ĝm(� � k=a))k2Z;m2Z ; a:e: � 2 R ;

whose kth “row” consists of the sample values ĝm(� � k=a), m 2 Z.

THEOREM 1. The system gnm, n;m 2 Z, has a finite frame upper bound Bg if and only
if Hg(�) and H�

g
(�) define for a.e. � 2 R a bounded linear operator of l2(Z) with operator

norm 6 (aBg)
1

2 . In particular, there then holds for k;m 2 Z

(3.4)
X
m

jĝm(� � k=a)j2 6 aBg ;
X
k

jĝm(� � k=a)j2 6 aBg

for a.e. � 2 R .

THEOREM 2. Let A > 0, B <1. Then we have

(3.5) A kfk2 6
X
n;m

j(f; gnm)j2 6 B kfk2 ; f 2 L2 ;

if and only if

(3.6) AI 6
1

a
Hg(�)H

�

g
(�) 6 BI ; a:e: � 2 R ;
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where the I in (3.6) denotes the identity operator of l2(Z).

We observe that Hg(�)H
�

g
(�) is given as the “matrix”

(3.7) Hg(�)H
�

g
(�) =

�X
m

ĝm(� � k=a) ĝ�
m
(� � l=a)

�
k;l2Z

; a:e: � 2 R ;

and that for all j; k; l 2 Z there holds

(3.8) (Hg(� � l=a)H�

g
(� � l=a))jk = (Hg(�)H

�

g
(�))l+j;l+k ; a:e: � 2 R :

Hence for checking (3.6) it is sufficient to consider � in an interval of length 1=a.
Also note that the system gnm, n;m 2 Z, is a tight frame if and only if there is a constant

c such that for a.e. � 2 R

(3.9)
X
m

ĝm(� � k=a) ĝ�
m
(� � l=a) = c Ækl ; k; l 2 Z :

THEOREM 3. Assume that the system gnm, n;m 2 Z, has a finite frame upper bound Bg,
and let f 2 L2. Then we have, with Sg the frame operator,

(3.10) dSgf(�) = 1

a

X
k

dk(�) f̂(� � k=a) ; a:e: � 2 R ;

with absolute convergence of the right-hand series for a.e. � 2 R. Here

dk(�) = (Hg(�)H
�

g
(�))0k(3.11)

=
X
m

ĝm(�) ĝ
�

m
(� � k=a) ; a:e: � 2 R ; k 2 Z :

Because of (3.8) there holds, more generally, for f 2 L2 and a.e. � 2 R

(3.12) dSgf(� � l=a) =
1

a

X
k

(Hg(�)H
�

g
(�))lk f̂(� � k=a) ; l 2 Z :

This gives a frame operator representation in the Fourier domain in terms of the matrices
Hg(�)H

�

g
(�) where L2(R̂) is identified with L2([0; 1=a) � Z). The relation (3.12) can be

extended as follows. Let Ag be a frame lower bound for the system gnm, n;m 2 Z, and let '
be a function analytic in an open set containing the closed segment [Ag; Bg]. Then we have
for f 2 L2 and a.e. � 2 R

(3.13) \'(Sg)f(� � l=a) =
X
k

�
'

�1
a
Hg(�)H

�

g
(�)
��

lk

f̂(� � k=a) ; l 2 Z :
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In particular, when Ag > 0, so that gnm, n;m 2 Z, is a frame, the choice '(x) = x�1 yields
a representation of the inverse of the frame operator Sg according to

[S�1
g
f(� � l=a) = dSÆ
f(� � l=a)(3.14)

=
X
k

�1
a
Hg(�)H

�

g
(�)
�
�1

lk

f̂(� � k=a) ; l 2 Z ;

for f 2 L2 and a.e. � 2 R. Specialization of (3.15) to the case f = gm, where m 2 Z, and
l = 0 yields for a.e. � 2 R

(3.15) Æ
̂m(�) = \S�1
g
gm(�) =

X
k

�1
a
Hg(�)H

�

g
(�)
�
�1

0k
ĝm(� � k=a) :

THEOREM 4. Assume that the systems gnm, n;m 2 Z, and 
nm, n;m 2 Z, have finite
frame upper bounds. Then the two systems are dual in the sense of (2.2) if and only if

(3.16) Hg(�)H
�



(�) = H
(�)H

�

g
(�) = aI ; a:e: � 2 R ;

if and only if X
m

ĝm(� � k=a) 
̂�
m
(�) =

X
m


̂m(� � k=a) ĝ�
m
(�)(3.17)

= a Æk0 ; k 2 Z ; a:e: � 2 R :

Note that (3.16) says that a�1H�



(�) is a right-inverse of Hg(�) and that a�1H
(�) is a

left-inverse of H�

g
(�) for a.e. � 2 R. The next theorem shows that the canonical dual system

Æ
nm, n;m 2 Z, is special in the sense that a�1H�
Æ

(�) is “the” generalized inverse of Hg(�)

for a.e. � 2 R.

THEOREM 5. Assume that gnm, n;m 2 Z, is a frame. Then

(3.18) H�

Æ

(�) = aH�

g
(�)(Hg(�)H

�

g
(�))�1 ; a:e: � 2 R ;

and

(3.19)
�1
a
HÆ
(�)H

�

Æ

(�)
�
�1

=
�1
a
Hg(�)H

�

g
(�)
�
�1

; a:e: � 2 R :

Theorem 5 can be made more explicit for the purpose of calculating the canonical dual
functions Æ
m as follows.

THEOREM 6. Assume that the system gnm, n;m 2 Z, is a frame, and denote by c(�) 2
l2(Z) for a.e. � 2 R the least-norm solution c = (cm)m2Z of the linear system

(3.20)
X
m

ĝm(� � k=a) cm = a Æk0 ; k 2 Z :

Then there holds

(3.21) Æ
̂m(�) = c�
m
(�) ; m 2 Z ; a:e: � 2 R :
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As a consequence of Theorem 6 we have the following. Assume that gnm, n;m 2 Z, and

nm, n;m 2 Z, are dual frames. Then we have

(3.22)
X
m

jÆ
̂m(�)j2 6
X
m

j
̂m(�)j2 ; a:e: � 2 R ;

with equality if and only if Æ
̂m = 
̂m a.e.

4. Gabor systems as shift-invariant systems

In this section we specialize the results of Sec. 3 to the case of a Gabor system (g; a; b),
so that we have now a g 2 L2 and a b > 0 such that

(4.1) gm(t) = e2�imbt g(t) ; m 2 Z ; t 2 R ;

as already said it is customary in Gabor theory to consider gna;mb rather than

gnm = exp(2�imb(� � na))g(� � na):

This amounts to dropping the phase factors exp(�2�inmab). Since (g; a; b) is a Gabor sys-
tem if and only if (ĝ; b; a) is a Gabor system, we have two ways of specialization of the
results of Sec. 3, yielding a description of the various notions and conditions in the frequency
domain and the time domain, respectively.

4.1. Frequency domain results

We first show what form the results of Sec. 3 take when we choose the gm as in (4.1).
This then yields a description of the frame bound conditions, the frame operator, the duality
condition and a characterization of and a computation method for the canonical dual function
Æ
. Since now

(4.2) ĝm(�) = (Fgm)(�) = ĝ(� �mb) ; m 2 Z ; a:e: � 2 R ;

the “matrix” Hg(�) in (3.3) is given by

Hg(�) = (ĝ(� �mb� k=a))k2Z;m2Z ;(4.3)

a:e: � 2 R ;

and the “matrix” Hg(�)H
�

g
(�) in Theorem 2 is given by

Hg(�)H
�

g
(�) =

� 1X
m=�1

ĝ(� �mb� k=a) ĝ�(� �mb� l=a)
�
k;l2Z

(4.4)

a:e: � 2 R :

Hence, Theorem 1 gives that (g; a; b) is a Gabor system with a finite frame upper bound Bg if
and only if Hg(�) in (4.4) and H�

g
(�) define for a.e. � 2 R a bounded linear operator of l2(Z)
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with operator norm 6 (aBg)
1

2 ; in particular, we then have that

(4.5)
X
m

jĝ(� �mb)j2 6 aBg ;
X
k

jĝ(� � k=a)j2 6 aBg ; a:e: � 2 R :

Furthermore, from Theorem 2 we see that (g; a; b) is a Gabor frame with frame boundsA > 0,
B <1 if and only if the matrices Hg(�)H

�

g
(�) in (4.5) satisfy

(4.6) AI 6
1

a
Hg(�)H

�

g
(�) 6 BI ; a:e: � 2 R :

Moreover, by Theorem 3 the frame operator of the Gabor frame (g; a; b) has the representation

(4.7) dSgf(�) = 1

a

X
k

dk(�) f̂(� � k=a) ; a:e: � 2 R ;

for f 2 L2 with absolute convergence of the right-hand side series for a.e. � 2 R, in which
the dk(�) are given by

(4.8) dk(�) =
X
m

ĝ(� �mb) ĝ�(� �mb� k=a) ; k 2 Z ; a:e: � 2 R :

Also, tightness of the frame (g; a; b) is equivalent with

(4.9)
X
m

ĝ(� �mb� k=a) ĝ�(� �mb� l=a) = c Ækl ; k; l 2 Z

for a.e. � 2 R with c some constant. And duality of two Gabor systems (g; a; b) and (
; a; b)
having a finite frame upper bound is equivalent withX

m

ĝ(� �mb� k=a) 
�(� �mb) =
X
m


̂(� �mb� k=a) g�(� �mb)

= a Æk0 ; k 2 Z ; a:e: � 2 R :

Finally, the canonical dual functions Æ
m = exp(2�imb�) Æ
 can be found by using that

(4.10) Æ
(�) =
X
k

�1
a
Hg(�)H

�

g
(�)
�
�1

0k
ĝ(� � k=a) ; a:e: � 2 R :

This canonical dual function Æ
 is minimal in the sense that for any dual frame (
; a; b) we
have for a.e. � 2 R that

(4.11)
X
m

jÆ
̂(� �mb)j2 6
X
m

j
̂(� �mb)j2 ;

with equality if and only if Æ
̂(� �mb) = 
̂(� �mb), m 2 Z. When we integrate (4.11) over
an interval of length b and use Parseval’s theorem, we obtain

(4.12) kÆ
k2 6 k
k2
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with equality if and only if Æ
 = 
 a.e. Hence the canonical dual Æ
 has the least L2 -norm
among all dual functions.

4.2. Time-domain results

We next show how the results of Sec. 3 can be applied to yield a description of the frame
bound conditions, the frame operator, the condition of duality, and a characterization of and
a computation method for the canonical dual Æ
 in the time domain. To do so, we note that

(4.13) F�1[gna;mb] (�) = e2�inmab(�g)�mb;na (�); n;m 2 Z ; a:e: � 2 R :

Here F�1 denotes the inverse Fourier transform and �g is the inverse Fourier transform of g,
so that

(4.14) �g(�) = (F�1g)(�) =

1Z
�1

e2�i�t g(t) dt ; a:e: � 2 R :

Furthermore, we have for f 2 L2

(4.15) (f; gna;mb) = e�2�inmab( �f; (�g)�mb;na) ; n;m 2 Z :

Consequently, when the system (g; a; b) has a finite frame upper bound or a positive frame
lower bound, then, by Parseval’s theorem, so has the system (�g; b; a), and the respective
frame bounds can be taken equal. And, in the case of finite frame upper bounds, the two
frame operators are related according to

(4.16) S(g;a;b)f = \S(�g;b;a)
�f ; f 2 L2 :

Furthermore, the two Gabor systems (g; a; b) and (
; a; b) are dual if and only if the systems
(�g; b; a) and (�
; b; a) are dual. Also, when (g; a; b) is a Gabor frame with canonical dual
Gabor frame (Æ
; a; b), then (�g; b; a) is a Gabor frame as well with canonical dual ((Æ
)�; b; a)
(for the latter fact we have used (4.16) together with (ĥ)�= h for h 2 L2).

Accordingly, we consider now the “matrix”

(4.17) Mg(t) := (g(t� na� i=b))i2Z;n2Z ; a:e: t 2 R ;

instead of the “matrix” Hg(�) in (3.3) and (4.4), and in Theorem 2 and (4.5) we have now the
“matrix”

Mg(t)M
�

g
(t) =

� 1X
n=�1

g(t� na� i=b) g�(t� na� j=b)
�
i;j2Z

;(4.18)

a:e: t 2 R ;

instead of the matrix Hg(�)H
�

g
(�). Theorem 1 gives that (g; a; b) has a finite frame upper

bound Bg if and only if Mg(t) in (4.17) and M �

g
(t) define for a.e. t 2 R a bounded linear
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operator of l2(Z) with operator norm 6 (bBg)
1

2 ; in particular, we then have that

(4.19)
X
n

jg(t� na)j2 6 bBg ;
X
i

jg(t� i=b)j2 6 bBg ; a:e: t 2 R :

Furthermore, by Theorem 2 we see that (g; a; b) is a frame with frame boundsA > 0, B <1
if and only if

(4.20) AI 6
1

b
Mg(t)M

�

g
(t) 6 BI ; a:e: t 2 R :

Next, by Theorem 3 the frame operator of the Gabor frame (g; a; b) has the representation

(4.21) (S(g;a;b)f)(t) =
1

b

X
i

ei(t) f(t� i=b) ; a:e: t 2 R ;

for f 2 L2 with absolute convergence of the right-hand side series for a.e. t 2 R, in which
the ei(t) are given by

(4.22) ei(t) =
X
n

g(t� na) g�(t� na� i=b) ; i 2 Z ; a:e: t 2 R :

Also, tightness of the frame (g; a; b) is equivalent with

(4.23)
X
n

g(t� na� i=b) g�(t� na� j=b) = c Æij ; i; j 2 Z ;

for a.e. t 2 R with c some constant. Moreover, the duality condition between two Gabor
frames (g; a; b) and (
; a; b) can be expressed asX

n

g(t� na� i=b) 
�(t� na) =
X
n


(t� na� i=b) g�(t� na)

= b Æi0 ; i 2 Z ; a:e: t 2 R :(4.24)

Finally, the canonical dual function Æ
 can be computed as

(4.25) Æ
(t) =
X
i

�1
b
Mg(t)M

�

g
(t)
�
�1

0i
g(t� i=b) ; a:e: t 2 R ;

and this Æ
 is minimal in the sense that for any other dual function 
 we have that kÆ
k2 6
k
k2 with equality if and only if Æ
 = 
 a.e.

We note that the representation (4.21–4.22) of the frame operator Sg (with shift param-
eters a, b) is called the Walnut representation [21] of the frame operator. Note that this
representation holds for any f 2 L2 with absolute convergence for a.e. t. A detailed study
of the convergence of the right-hand side of (4.21) as an operator of L2 has been carried out
in [28]. A sufficient condition that the Gabor system has a finite frame upper bound while the
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representation (4.21) converges unconditionally is that g satisfies the CC-condition: there is
an M <1 such that

(4.26)
X
i

jei(t)j 6M ; a:e: t 2 R ;

with the ei given in (4.22), see [28], Theorem 4.1 and 6.9.

5. Gabor systems in the time-frequency domain

In this section we consider Gabor systems (g; a; b) with g 2 L2 and a > 0, b > 0 in
the time-frequency domain. We shall thus obtain a description in the time-frequency domain
of the frame bound conditions and the frame operator, of the duality condition and of the
canonical dual function Æ
. We define time-frequency shift operators Ukl for k; l 2 Z by

(5.1) Ukl h = hk=b;l=a ; h 2 L2 :

The proofs of the main results in this section can be found in [23], [27], Sec. 1.4, while many
of these main results can also be found in [20], [29]. It should be noted that the approaches
used in [23], [27], Sec. 1.4 and in [20] and in [29] are quite different; indeed, [20], [23]
and [29] were written independently of one another and more or less simultaneously. We
follow here the the approach in [23], [27], Sec. 1.4 which is based upon what we call the
Fundamental Identity. This identity can be traced back to the work of Tolimieri and Orr [22],
and the sharp form that we present below is due to Janssen, [30], Proof of Prop. A, [23],
Props. 2.3 and 2.4, [27], Subsec. 1.4.1.

THEOREM 7 (Fundamental Identity). Let f (1); f (2); f (3); f (4) 2 L2, and assume that at
least one of the systems (f (1); a; b), (f (2); a; b) and at least one of the systems (f (3); a; b),
(f (4); a; b) has a finite frame upper bound. Also assume that

(5.2)
X
k;l

j(f (3); f
(2)

k=b;l=a
)j j(f (1)

k=b;l=a
; f (4))j <1 :

Then

(5.3)
X
n;m

(f (1); f
(2)

na;mb
)(f

(3)

na;mb
; f (4)) =

1

ab

X
k;l

(f (3); f
(2)

k=b;l=a
)(f

(1)

k=b;l=a
; f (4)) :

The proof of this result consists of a careful inspection of the proof of the Poisson sum-
mation formula for functions of two variables and their 2D-Fourier transforms where the
2D-Fourier transform pair

(x; y)! (f (1); f (2)
x;y

)(f (3)
x;y
; f (4)) ;(5.4)

(v; w)! (f (3); f
(2)
w;�v)(f

(1)
w;�v; f

(4))

is taken.
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Now let g 2 L2 and define the linear mapping Ug of L2 by

(5.5) Ugf = ((f; gk=b;l=a))k;l2Z ; f 2 L2 :

THEOREM 8. The Gabor system (g; a; b) has a finite frame upper bound Bg if and only
if Ug and U �

g
are bounded linear mappings of L2 into l2(Z2) and l2(Z2) into L2, respectively,

with operator norms 6 (abBg)
1

2 . In particular, the Gabor system (g; 1=b; 1=a) then has the
finite frame upper bound abBg.

Note that the mapping U �

g
is given by

(5.6) U�

g
c =

X
k;l

ckl gk=b;l=a ; c 2 l2(Z2) :

THEOREM 9. Let A > 0, B <1. Then we have

(5.7) A kfk2 6
X
n;m

j(f; gna;mb)j2 6 B kfk2 ; f 2 L2 ;

if and only if

(5.8) AI 6
1

ab
Ug U

�

g
6 BI ;

where I is now the identity operator of l2(Z2). That is, (g; a; b) is a frame if and only if
(g; 1=a; 1=b) is a Riesz basis for its linear span.

We observe that Ug U
�

g
maps l2(Z2) into l2(Z2) (when (5.8) holds), with matrix elements

given by

(5.9) (Ug U
�

g
)k;l;k0;l0 = (gk0=b;l0=a; gk=b;l=a) ; k; l 2 Z ; k0; l0 2 Z :

Hence, the frame upper bound conditions and tightness of the Gabor frame (g; a; b) can be
read off from the operator Ug U

�

g
whose matrix elements are given in (5.9). In particular,

(g; a; b) is a tight frame if and only if

(5.10) (gk0=b;l0=a; gk=b;l=a) = c Ækk0 Æll0 ; k; l 2 Z ; k0; l0 2 Z ;

for some constant c.
We next give a result, Theorem 10 below, on frame operator representation. We first

introduce a norm-preserving mapping of L2 into L2(Z2 � [0; b�1) � [0; a�1)). Let h be any
member of Schwartz space S with khk = 1. Then the mapping STFTh, defined for f 2 L2

by

(5.11) (STFThf)(x; y) = (f; hx;y) ; y 2 R ;

is a norm-preserving mapping of L2 into L2(R2). Now there holds, see (5.1), for f 2 L2,
k; l 2 Z and x; y 2 R that

(5.12) (Uklf; hx;y) = (f; hx�k=b;y�l=a) e
�2�iky=b+2�ikl=ab :
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Hence the mapping Vh, defined for f 2 L2 by

(Vhf)(k; l ; x; y) = (Uklf; hx;y) ; k; l 2 Z ;(5.13)

x 2 [0; b�1) ; y 2 [0; a�1) ;

is a norm-preserving mapping from L2 into L2(Z2 � [0; b�1)� [0; a�1)).

THEOREM 10. When the system (g; a; b) has a finite frame upper bound Bg, we have for
f 2 L2

(VhSgf)(�; � ; x; y) =
1

ab
(UgU

�

g
)T (Vhf)(�; � ; x; y) ;

x 2 [0; b�1) ; y 2 [0; a�1) ;(5.14)

where (UgU
�

g
)T is the transpose of the “matrix” UgU

�

g
in (5.9).

Note that in this representation of the frame operator Sg the matrix (ab)�1 (UgU
�

g
)T is

independent of x; y. The relation (5.14) extends as follows. Assume that Ag is a frame lower
bound of the Gabor frame (g; a; b) and that ' is analytic on an open set containing the closed
segment [Ag; Bg]. Then (5.14) holds with Sg at the left-hand side replaced by '(Sg) and
(ab)�1 (UgU

�

g
)T at the right-hand side replaced by '((ab)�1 (UgU

�

g
)T ).

The representation in Theorem 10 can be rephrased more loosely as follows. Assume that
the Gabor system (g; a; b) has a finite frame upper bound Bg. Then the frame operator Sg has
the representation

(5.15) Sg =
1

ab

X
k;l

(g; gk=b;l=a)Ukl

in the sense that for any f; h 2 L2 such that ((Uklf; h))k;l2Z2 l2(Z2) there holds

(5.16) (Sgf; h) =
1

ab

X
k;l

(g; gk=b;l=a)(Uklf; h) :

In the case that g satisfies

(5.17) condition A : E :=
X
k;l

j(g; gk=b;l=a)j <1

of Tolimieri and Orr [22], Sec. 3, the system (g; a; b) has the finite frame upper bound E=ab,
and the convergence in (5.15) is without any proviso.

THEOREM 11. Assume that the systems (g; a; b) and (
; a; b) have finite frame upper
bounds. Then the two systems are dual if and only if

(5.18) UgU
�



= U
U

�

g
= abI :

Moreover, we have for the canonical dual Æ
 that

(5.19) U�

Æ

= ab U�

g
(UgU

�

g
)�1 ;
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and

(5.20)
1

ab
UÆ
U

�

Æ

=
� 1

ab
UgU

�

g

�
�1

;

so that the inverse frame operator has the representation

(5.21) S�1
g

= SÆ
 =
X
k;l

� 1

ab
UgU

�

g

�
�1

kl;00
Ukl

with the same proviso as in (5.15).

The duality condition in (5.18) can be made more explicit as follows. We have that two
Gabor systems (g; a; b) and (
; a; b), both with a finite frame upper bound, are dual if and
only if

(5.22) (
; gk=b;l=a) = ab Æk0Æl0 ; k; l 2 Z :

This is a rigorous form of the celebrated Wexler-Raz biorthogonality condition [24]. Also,
(5.19) can be made more explicit as follows. We have that Æ
 is the unique element 
 2 L2 of
minimum norm such that (5.22) holds. The latter result has become known as the “Wexler-
Raz dual equals the frame dual”-result.

6. Gabor systems in the Zak transform domain

We consider in this section Gabor systems (g; a; b) for the special case that (ab)�1 = q=p

with integer q and p satisfying gcd(q; p) = 1.
Let � > 0. We define for h 2 L2 the Zak transform Z�h of h by

(6.1) (Z�h)(t; �) = �
1

2

1X
k=�1

h(�(t� k)) e2�ik� ; a:e: t; � 2 R :

The following properties hold for the Zak transform. Let f; h 2 L2. Then Zf; Zh 2
L2
loc(R

2), they are quasi-periodic according to

(6.2) F (t+ 1; �) = e2�i� F (t; �) ; F (t; � + 1) = F (t; �) ; a:e: t; � 2 R ;

and there holds

(6.3) (f; h) = (Zf; Zh) ;

where the inner product on the right-hand side involves any unit square in R 2 . Furthermore,
any F 2 L2

loc satisfying (6.2) is of the form F = Zf with some unique f 2 L2. Some other
properties are

(6.4) �
1

2 f(�t) =

1Z
0

(Z�f)(t; �) ; a:e: t 2 R ;
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and

(6.5) (Z�f̂)(t; �) = e2�i�t(Z1=�f)(��; t) ; a:e: t; � 2 R :

Finally, any continuous F satisfying (6.2) has a zero in any unit square in R 2 . See [31] for
these and many more properties of the Zak transform.

The usefulness of the Zak transform for description of frame bound conditions, frame
operator, the duality condition and characterization and computation of the canonical dual
function was recognized and elaborated by Zibulski and Zeevi, see, for instance, [25]. Also
see [26], pp. 978 and 981 and [32]. We make the choice � = b�1 and suppress the subscript
� in Z� so that

(6.6) (Zh)(t; �) = b�
1

2

1X
k=�1

h

�t� k

b

�
e2�ik� ; a:e: t; � 2 R ;

for h 2 L2. See [27], Subsec. 1.5.7, where it is shown that the choice � = a yields equally
useful results.

We set for f; h 2 L2 and a.e. t; � 2 R

(6.7) �f (t; �) = p�
1

2

�
(Zf)

�
t� l

p

q
; � +

k

p

��
k= 0; : : : ;p� 1
l = 0; : : : ;q � 1

;

(6.8) Afh(t; �) = �f (t; �)(�h(t; �))� :

THEOREM 12. The Gabor system (g; a; b) has a finite frame upper bound Bg if and only
if �g(t; �) and (�g(t; �))� are for a.e. t; � 2 [0; 1) bounded linear mappings of C q into C p

and C p into C q , respectively, with norm 6 B
1

2

g . In particular, there holds

(6.9) j(Zg)(t; �)j2 6 pBg ; a:e: t; � 2 R :

We note here that it thus follows that (g; a; b) has a finite frame upper bound if and only
if Zg is essentially bounded.

THEOREM 13. Let A > 0, B <1. Then we have

(6.10) A kfk2 6
X
n;m

j(f; gna;mb)j2 6 B kfk2 ; f 2 L2 ;

if and only if

(6.11) AIp�p 6 Agg(t; �) 6 B Ip�p ; a:e: t; � 2 R ;

where Ip�p denotes the identity operator of C p .
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We observe that one can restrict oneself in checking the condition (6.11) to the set (t; �) 2
[0; q�1)� [0; p�1). We also note that the Gabor frame (g; a; b) is tight if and only if

(6.12) Agg(t; �) = c Ip�p ; a:e: t; � 2 R ;

for some constant c.

THEOREM 14. Assume that the Gabor system (g; a; b) has a finite frame upper bound.
With Sg the frame operator, there holds for f 2 L2

(6.13) �Sgf(t; �) = Agg(t; �) �f (t; �) ; a:e: t; � 2 R :

Theorem 14 gives the representation of the frame operator Sg in the Zak transform domain
via the matrices �f in (6.7). More generally, when Ag is a frame lower bound for (g; a; b)
and ' is analytic in an open set containing the closed segment [Ag; Bg], we can replace Sg
at the left-hand side of (6.13) by '(Sg) and Agg(t; �) at the right-hand side of (6.13) by
'(Agg(t; �)).

THEOREM 15. Assume that the systems (g; a; b) and (
; a; b) have finite frame upper
bounds. Then the two systems are dual if and only if

(6.14) �g(t; �)(�
(t; �))� = �
(t; �)(�g(t; �))� = Ip�p ; a:e: t; � 2 R :

Moreover, we have for the canonical dual that

(6.15) (�
Æ
(t; �))� = (�g(t; �))� (�g(t; �) (�g(t; �))�)�1 ; a:e: t; � 2 R ;

and

(6.16) A
Æ


Æ

(t; �) = (Agg(t; �))�1 ; a:e: t; � 2 R :

The condition of duality can be written more explicitly as follows. The systems (g; a; b)
and (
; a; b), both having a finite frame upper bound, are dual if and only if for a.e. t; � 2 R
we have

(6.17)
1

p

q�1X
l=0

(Zg)
�
t� l

p

q
; � +

k

p

�
(Z
)�

�
t� l

p

q
; �

�
= Æk0 ; k = 0; :::; p� 1 :

Furthermore, for any dual system (
; a; b) and a.e. t; � 2 R we have

(6.18)
q�1X
k=0

���(ZÆ
)
�
t+

k

q
; �

����2 6 q�1X
k=0

���(Z
)�t+ k

q
; �

����2 ;
with equality if and only if (ZÆ
)(t+ k=q; �) = (Z
)(t+ k=q; �) for k = 0; :::; q � 1.
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7. When is (g; a; b) a Gabor frame?

In this section we present a collection of results, comments, observations, (counter)ex-
amples, open problems, etc., on the basic problem of deciding whether a triple (g; a; b) with
g 2 L2 and a > 0, b > 0 is a frame. While the finite frame upper bound condition is
reasonably easy to deal with by imposing rather mild smoothness and decay conditions, the
positivity of the frame lower bound presents a much harder problem. The basic problem can
be considered in each of the four domains of Secs. 4–6, and any one of these domains can
come with a particular advantage. By nature, this section is not as well organized as the
preceding sections. Other authors might well have chosen to include different specific topics.

7.1.

We start with the well-known result that when g 2 L2 and (g; a; b) is a frame then we
must have (ab)�1 > 1. This result has a long and complicated history, see for this [16],
Sec. 4.1, [26], p. 978, [30], Sec. 1. There is a stronger result, due to Howe and Steger using
results of Rieffel in [33], that says that completeness of the system (g; a; b) in L2 implies that
(ab)�1 > 1. In [34], Sec. 2, Benedetto, Heil and Walnut present a somewhat unsettling exam-
ple of a g 2 L2 and an irregular Gabor system (i.e. the time-frequency points involved in the
shifts do not form a lattice) of arbitrarily low density such that the system is complete in L2,
but not a frame. Restricting again to frames, several proofs of the fact that (ab)�1 > 1 when
(g; a; b) is a frame are known now. When (ab)�1 = q=p is rational with integer q, p such that
gcd(q; p) = 1, a simple rank consideration of the matrices in (6.7) and (6.11) suffices to show
that p 6 q, i.e. (ab)�1 > 1. For general values of (ab)�1, a simple proof can be based upon
the Wexler-Raz biorthogonality condition (5.22) together with the inequality j(g; Æ
)j 6 1 that
follows from (2.14). Yet another proof follows upon integrating the duality condition (4.10)
for the canonical dual Æ
 over an interval of length b and using (as in the previous proof) that
j(g; Æ
)j 6 1. It is the latter approach that can be generalized to shift-invariant systems, the
windows of which have certain frequency localization properties, see [35].

7.2.

We now consider the case that (ab)�1 = 1. It is particularly convenient to discuss this
case in the Zak transform domain since now we have p = q = 1 in (ab)�1 = q=p, so that the
matrices in (6.7–6.8) reduce to scalars. As already said in Sec. 6, when Zg is continuous it
must have a zero in any unit square. Hence, when ab = 1 and (g; a; b) is a frame, it cannot
be true that g is continuous and rapidly decaying (for then Zg is continuous and has a zero,
whence the lower frame bound in (6.11) is zero). Another result for the case (ab)�1 = 1
is the Balian-Low theorem (for the complicated history of this result, see [34], Subsec. 1.1),
according to which at least one of g 0(t) and tg(t) is not square integrable as a function of
t 2 R when (g; a; b) is a frame. Somewhat surprisingly, there is a construction involving
cosines and sines rather than exponentials where one does get a frame at critical density
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(ab)�1 = 1 with a well-behaved window g (Wilson bases, see [16], Subsec. 4.2.2 for history
and details of the construction).

In the remainder of this section we shall consider, with few exceptions, the case that
(ab)�1 > 1.

7.3.

We shall first indicate a class of windows g such that (g; a; b) is a Gabor frame. To that
end we choose a continuous g, positive on and vanishing outside an interval (� 1

2
c; 1

2
c), where

c is any number in the non-empty interval (a; b�1). Now the “matrix” Mg(t)M
�

g
(g) in (4.19)

is a diagonal matrix with strictly positive diagonal elements

(7.1) D(t) =
X
n

jg(t� na)j2 ; t 2 R ;

that are bounded away from 0 and1. Hence by (4.20) there are the frame bounds b�1 min D,
b�1 max D. One easily sees, furthermore, that a tight frame (h; a; b) is obtained by choosing
h = g=D

1

2 .

7.4.

There are a few cases where one can show that a system (g; a; b) with a finite frame upper
bound is a Gabor frame by displaying a dual function 
 such that (
; a; b) has a finite frame
upper bound. This is so, for instance, for the case of the Gaussian window

(7.2) g�(t) = (2�)
1

4 exp(���t2) ; t 2 R ;

and for the one-sided exponential considered in 7.5 below. In [30], Sec. 3, the Wexler-Raz
biorthogonality condition (5.22) for g = g� is written out and elaborated to yield, for any
" > 0 with " < ��1(1� ab), the biorthogonal function (apart from a constant factor)


";�(t) =

tZ
0

e���cs
2

1X
k=�1

(�1)k exp
���a
"bc

(k +
1

2
� bcs)2

�
ds ;(7.3)

t 2 R ;

where c = (�" + ab)�1 > 1. It can be shown that this 
";� can be extended to an entire
function of t = x+ iy 2 C satisfying

(7.4) 
";�(x + iy) = O(exp(���x2 + �"�1y2)) ; x; y 2 R :

This implies that both 
";� and 
̂";� have Gaussian decay, just like g� and ĝ�. Such a 
";� can
also be constructed by using the Bargmann transform, see, for instance [7], [8]. Interestingly,
when � = 1 and we take " # 0 we obtain a function 
0;1 that would coincide with Bastiaans
singular function in [4] when ab = 1. The latter singular function can be shown to be in any
L1nLp with 1 6 p <1, see [10], Subsec. 4.4.
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The result that (g; a; b) is a frame for Gaussian g and (ab)�1 > 1, and several general-
izations of it, has a rich history for which we refer to [16], Subsec. 3.4.4.B, [26], pp. 980–
982, [30], Sec. 1. In [36], Lyubarskii and Seip give a very careful and detailed analysis of
what happens for Gaussian g and (ab)�1 = 1 when the lattice of the relevant time-frequency
points is slightly disturbed.

It is unlikely that any of the 
";� in (7.4) coincides with the canonical dual Æ
. For even
values of (ab)�1 and � = 1 the canonical dual Æ
� was computed in [37], Sec. 6 as

Æ
�(t) =
ab

#3(�t=a ; exp(��=2a2))

1X
k=�1

ck exp(��(t� k=b)2) ;(7.5)

t 2 R ;

with #3 a theta function, see [37], (6.5), and ck certain numbers decaying like exp(��jkj=2b2)
as jkj ! 1. This Æ
� cannot be extended to an entire function and it decays only like
exp(��jtj=2b) as t 2 R, jtj ! 1. For non-integral values of (ab)�1 it does not seem easy
to determine the canonical dual (even the case that (ab)�1 is an odd integer presents serious
problems).

7.5.

We consider next the one-sided exponential

(7.6) �g(t) = (2�)
1

2 e��t �[0;1)(t) ; t 2 R ;

with � > 0. One can again guess a dual �
 by looking at the Wexler-Raz biorthogonality
condition (5.22), and one obtains as a dual function

(7.7) �
(t) =
b

p
2�

e�t(�[0;a)(t)� �[�a;0)(t)) ; t 2 R :

We note that this �
 works also for the case that (ab)�1 = 1, whence (�g; a; b) is a Gabor
frame for any a > 0, b > 0 with (ab)�1 > 1. When (ab)�1 is an integer, one can compute the
canonical dual Æ

�

, see [37], (4.11), as

Æ

�

(t) =

b
p
2�

1� e�2�a

1� e�2�=b
e�t�2�abt=ac �

�(�[0;1=b)(t)� e�2�=b �[�1=b;0)(t)) ; t 2 R ;(7.8)

and this Æ

�

 differs from the �
 in (7.7) (unless (ab)�1 = 1).

We note that in [37] there are some more specific examples, such as two-sided exponen-
tials, hyperbolic secants, for which it is shown that they yield a Gabor frame with integer
(ab)�1 > 1.
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7.6.

While 1 is the lower bound for (ab)�1 so that (g; a; b) can be a frame, it appears that the
chances of having a frame increase with increasing value of (ab)�1. For integer values N of
(ab)�1 this is apparent from Sec. 6, since now the matrix Agg(t; �) is a scalar (p = 1, q = N ),
given by

(7.9) Agg(t; �) =
N�1X
l=0

���(Zg)�t� l

q
; �

����2 ; a:e: t; � 2 R ;

and this quantity is positive and bounded for many windows g, including certain smooth and
rapidly decaying g’s. More precisely, according to [26], Theorems 2.5–6, for any sufficiently
well-behaved g there are ac > 0, bc > 0 such that (g; a; b) is a frame when 0 < a < ac,
0 < b < bc. Also see [13], Part 1, Theorem 6.1. Such a result can also be obtained from
the frame operator representation (5.15) (holding under condition A in (5.17)) when (g; gx;y)
decays sufficiently rapidly when x2+y2 !1. Then in the right-hand side of (5.15) the terms
with (k; l) 6= (0; 0) are small compared to the term (ab)�1I , corresponding to (k; l) = (0; 0),
as a�2 + b�2 !1. When one allows g’s that are not well-behaved, one gets problems with
results of this type. In [38] there is constructed for any irrational � a smooth, bounded g 2 L2

such that for any rational a > 0, b > 0 the system (g; a; b) has a finite frame upper bound
while for any � > 0 and any rational c > 0 the system (g; c�; �) has no such bound. Also
in [38] there is an example of a g, bounded and supported by [0; 1], such that the above ac,
bc do not exist, and an example of a g such that 0 is accumulation point of points a such that
(g; a; b) has frame lower bound 0 and, at the same time, accumulation point of points a such
that (g; a; b) has frame lower bound > 1 (arbitrary b 2 (0; 1)).

7.7.

It seems hard to find a general condition on windows g2L2 (with reasonable smoothness
and decay properties) ensuring (g; a; b) to be a frame for all or even some specific values of
a > 0, b > 0 with (ab)�1 > 1. In [39] two such classes of windows, for integer values of
(ab)�1, are found. The first class consists of all g supported, positive, strictly decreasing and
continuous and integrable on [0;1), for which (ab)�1 is allowed to take any positive integer
> 1 as its value. This class contains the one-sided exponentials in 7.5. The second class
consists of all even, positive, continuous and integrable g such that g has on [0;1) the form

(7.10) g(t) = b(t) + b(t + 1) ; t > 0 ;

with b strictly convex and positive on [0;1). In these classes, the respective conditions of
strictness cannot be weakened yielding, for instance, a well-behaved rapidly decaying g such
that both g and ĝ are strictly positive while (g; 1

2
; 1) is not a frame. We also observe that the

Gaussians do not belong to either one of these two classes.
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7.8.

An example of a g that just fails to belong to the first class in 7.7 is the characteristic
function �[0;c) of the interval [0; c). Assuming without restriction that b = 1 the author has
obtained the following results for this g. The frame upper bound condition is always satisfied
in this case, and we can restrict to a < 1, c > 1 for it is not difficult to show that

(a) c < a or a > 1) no frame,
(b) a 6 c 6 1) frame,
(c) a = 1, c > 1) no frame.

Assuming a < 1, c > 1 one can show furthermore that

(d) a 62 Q , c 2 (1; 2)) frame,
(e) a = p=q 2 Q , gcd(p; q) = 1, 2� 1

q
< c < 2) no frame,

(f) a > 3
4
, c = L� 1 + L(1� a) with integer L > 3) no frame,

(g) jc� bcc � 1
2
j < 1

2
� a) frame.

While (f) shows that one may fail to have a frame for irrational a, it seems to hold that
one does have a frame when a, c, a=c are irrational. And for rational a = p=q, gcd(p; q) = 1,
one can give an algorithm that determines whether one has a frame for any c > 1 (complexity
determined by q, p). In particular one thus can find rational a > 1

2
and c > 1 such that one

has a frame.
This shows that the answer to the basic question is already rather bewildering for windows

g as elementary as a characteristic function.

7.9.

We continue by giving some comments on inheritance of certain desirable properties of
a g 2 L2 for which (g; a; b) is a frame by the canonical dual. We recall from Subsec. 4.1 the
CC-condition of essential boundedness of

P
i
jei(t)j, with ei given by (4.22), guaranteeing

the Walnut representation (4.21) of the frame operator to converge unconditionally as an
operator of L2. It is an open problem whether Æ
 inherits the CC-condition from g. In [28],
Theorem 4.14, it is shown that for rational values of (ab)�1 a slightly stronger condition, viz.
the uniform CC-condition, is inherited by Æ
 from g.

A similar situation occurs for condition A of Tolimieri and Orr, see (5.17). While it is an
open problem whether this condition A is inherited for all values of (ab)�1 > 1, it has been
shown in [32] that it does so for rational values of (ab)�1.

7.10.

The next topic concerns the construction of a tight frame canonically associated to a
Gabor frame. Given a Gabor frame (g; a; b) with frame operator Sg, the Gabor frame (h; a; b)
with

(7.11) h = S
�

1

2

g g



98 A.J.E.M. Janssen / Representations of Gabor frame operators

is tight. It should be noted that this h can be computed using the functional calculus (with
'(x) = x�

1

2 ) for the frame operator in the various domains (see the comments after Theo-
rems 3, 10 and 14). For instance, when (ab)�1 = q=p is rational, the h in (7.11) is given in
the Zak transform domain according to

(7.12) �h(t; �) = (Agg(t; �))�
1

2 �g(t; �) ; a:e: t; � 2 R :

In the particular case that (ab)�1 is an integer N (so that q = N , p = 1) we get

(7.13) �h(t; �) =
�g(t; �)�P

N�1

l=0

���(Zg)�t + l

N
; �

����2� 1

2

; a:e: t; � 2 R ;

i.e.

(7.14) (Zh)(t; �) =
(Zg)(t; �)�P

N�1

l=0

���(Zg)�t + l

N
; �

����2� 1

2

; a:e: t; � 2 R :

7.11.

A further interesting point is the problem of finding out whether certain decay and smooth-
ness properties of a g generating a Gabor frame are inherited by the canonical dual Æ
 or by
the tight frame generating h of (7.11). In [23], see Properties 5.5–6, it is shown, by using Ba-
nach algebra methods, that when g 2 S generates a Gabor frame, then both Æ
 and h of (7.11)
are in S as well. A different proof of this fact, as pointed out by K.-H. Gröchenig, can be
based on the frame operator representations of Sec. 4 together with a result of S. Jaffard [40]
on inheritance of decay of the off-diagonal elements of an invertible operator of l2(Z) by the
inverse and the inverse square root of the operator. For inheritance of exponential decay in
the time and/or frequency domain the latter approach has been worked out in [41], Secs. 2
and 4.

There are some more results in [41] on inheritance of smoothness and decay by Æ
 and
h from g. For instance, it is shown that in the case of integer values of (ab)�1, there is no
inheritance of faster-than-exponential decay unless we are dealing with tight frames. Whether
there do exist tight frames (g; a; b) with a g having faster-than-exponential decay in both the
time domain and the frequency domain is an open problem.

7.12.

We finally make some comments on discrete-time Gabor systems. We now take N;M 2
N and g 2 l2(Z), and we consider the system of sequences gnN;m=M with n 2 Z, m =
0; 1; :::;M � 1 , defined by

(7.15) gnN;m=M = (e2�imr=M g(r � nN))r2Z :
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