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ABSTRACT. The intensities of a sufficient number of X-ray diffraction maxima de-
termine the structure of a crystal, that is, the positions of the atoms in the unit cell of
the crystal. The available intensities usually exceed the number of parameters needed
to describe the structure. From these intensities a set of numbers jEHj can be derived,
one corresponding to each intensity. However, the elucidation of the crystal struc-
ture also requires a knowledge of the complex numbers EH = jEHj exp(i'H), the
normalized structure factors, of which only the magnitudes jEHj can be determined
from experiment. Thus, a “phase” 'H, unobtainable from the diffraction experiment,
must be assigned to each jEHj, and the problem of determining the phases when only
the magnitudes jEHj are known is called the “phase problem”. Owing to the known
atomicity of crystal structures and the redundancy of observed magnitudes jEHj, the
phase problem is solvable in principle.

Probabilistic methods have traditionally played a key role in the solution of this
problem. They have led, in particular, to the so-called tangent formula which, in turn,
has played the central role in the development of methods for the solution of the phase
problem.

Finally, the phase problem may be formulated as one in constrained global op-
timization. A method for avoiding the countless local minima in order to arrive at
the constrained global minimum leads to the Shake-and-Bake algorithm, a completely
automatic solution of the phase problem for structures containing as many as 1000
atoms when data are available to atomic resolution.

In the case that single wavelength anomalous scattering (SAS) data are available,
the probabilistic machinery leads to estimates of special linear combinations of the
phases, the so-called structure invariants. A method of going from estimates of the
structure invariants to the values of the individual phases is described.
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1. Introduction

When a crystal is irradiated with a beam of X-rays the resulting interference effect gives
rise to the so-called diffraction pattern which is uniquely determined by the crystal structure.
Only the intensities of the scattered rays can be measured; the phases, which are also needed
in order to work backwards, from diffraction pattern to the atomic positions, are lost in the
diffraction experiment. However, owing to the known atomicity of real structures and the
large number of observable intensities, the lost phase information is in fact contained in the
measured intensities. The problem of recovering the missing phases, when only the intensi-
ties are available, is known as the phase problem. Alternatively, since the magnitudes jEj of
the normalized structure factors E = jEj exp(i') are readily determined from the measured
diffraction intensities, the phase problem may be defined as the problem of determining the
phases ' when the magnitudes jEj are given.

Due to the redundancy of known magnitudes jEj, the phase problem is an over deter-
mined one and is therefore solvable in principle. This over determination implies the exis-
tence of relationships among the Es and, therefore, since the magnitudes jEj are presumed
to be known, the existence of identities among the phases ' alone, dependent on the known
magnitudes jEj, which must of necessity be satisfied. The so-called direct methods are those
which exploit these relationships in order to go directly from known magnitudes jEj to de-
sired phases '. They do not depend on the presence of heavy atoms or atoms having other
special scattering properties, for example anomalous scatterers, or prior structural knowledge.

The techniques of modern probability theory lead to the joint probability distributions of
arbitrary collections of normalized structure factors from which the conditional probability
distributions of selected sets of phases, given the values of suitably chosen magnitudes jEj,
may be inferred. These distributions, dependent on known magnitudes jEj, constitute the
foundation on which direct methods are based. They have provided the unifying thread from
the beginning, circa 1950, until the present time. In particular, they have led to the recent
formulation of the phase problem as one of constrained global optimization [1].

In the case that the structure consists of N identical atoms in the unit cell the relationship
between diffraction pattern and crystal structure is given by the pair of equations

(1.1) EH = jEHj exp(i'H) = N�1=2
NX
j=1

exp(2�iH � rj)

(1.2) hEH exp(�2�iH � r)iH �

�
N�1=2 if r = rj
0 if r 6= rj
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where rj is the position vector of the atom labeled j and jEHj is obtained from the intensity
of the scattered beam in the direction labeled by the reciprocal lattice vector EH. Clearly if
one is to determine the crystal structure from Eq.(1.2) it is necessary to know not only the
magnitudes jEHj, obtainable from the diffraction experiment, but also the phases 'H, lost in
the diffraction experiment.

2. Method

2.1. The Structure Invariants

Equation (1.2) implies that the normalized structure factors EH determine the crystal
structure. However, Eq.(1.1) does not imply that, conversely, the crystal structure determines
the values of the normalized structure factors EH since the position vectors rj depend not
only on the structure but on the choice of origin as well. It turns out, nevertheless, that the
magnitudes jEHj of the normalized structure factors are in fact uniquely determined by the
crystal structure and are independent of the choice of origin, but that the values of the phases
'H depend also on the choice of origin. Although the values of the individual phases depend
on the structure and the choice of origin, there exist certain linear combinations of the phases,
the so-called structure invariants, whose values are determined by the structure alone and are
independent of the choice of origin. The most important class of structure invariants, and the
only one to be considered here, consists of the three-phase structure invariants (triplets),

(2.1) 'HK = 'H + 'K + '
�H�K;

whereH andK are arbitrary reciprocal lattice vectors.

2.2. The Probabilistic Background

It is assumed that the atomic position vectors rj are the primitive random variables, uni-
formly and independently distributed in the unit cell. Then the normalized structure factors
EH, as functions of the rj’s, are themselves random variables. The structure invariants 'HK
in turn, as functions of the individual phases ' (Eq.(2.1)), are therefore also random variables.

2.3. The Conditional Probability Distribution of 'HK, Given jEHj,jEKj,jEH+Kj

Under the conditions set forth in x 2.2 the conditional probability distribution of the triplet
'HK (Eq.(2.1)), given the presumed known values of jEHj,jEKj,jEH+Kj, is known to be

(2.2) P (�jAHK) = [2�I0(AHK)]
�1

exp(AHK cos �)

where � represents the triplets 'HK, the parameter AHK is defined by

(2.3) AHK = 2N�1=2jEHEKEH+Kj;

and I0 is the Modified Bessel Function. Equation (2.3) implies that the mode of 'HK is zero,
and the conditional expected value (or average) of cos'HK, given AHK, is

(2.4) "(cos'HKjAHK) = I1(AHK)=I0(AHK) > 0;
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where I1 is the Modified Bessel Function. It is also readily confirmed that the larger the value
of AHK the smaller is the conditional variance of cos'HK, given AHK. It is to be stressed
that the conditional expected value of the cosine, Eq.(2.4), is always positive since AHK > 0.

2.4. The Minimal Principle

In view of Eq.(2.4) one obtains the following estimate of cos'HK:

(2.5) cos'HK � I1(AHK)=I0(AHK)

and expects that the smaller the variance, that is the larger AHK, the more reliable this es-
timate will be. Hence one is led to construct the function (the so-called minimal function),
determined by the known magnitudes jEj,

(2.6) R = R(') =
1P

H;KAHK

X
H;K

AHK

�
cos'HK �

I1(AHK)

I0(AHK)

�2

which, in view of Eq.(2.1), is seen to be a function of phases ' alone. Equation (2.4) then
implies that the global minimum of the minimal function R('), where the phases are con-
strained to satisfy the identities known to exist (x 1), yields the desired phases (the minimal
principle). Thus the phase problem is formulated as a problem in constrained global mini-
mization [2]. There remains only the problem of avoiding the myriad local minima ofR(') in
order to arrive at the constrained global minimum. The next section shows how this minimum
is reached via the computer program Shake-and-Bake.

2.5. The Computer Program “Shake-and-Bake”

[3]
The six-part Shake-and-Bake phase determination procedure, shown by the flow diagram

in Figure 1, combines minimal-function phase refinement and real-space filtering. It is an
iterative process that is repeated until a solution is achieved or a designated number of cy-
cles have been performed. With reference to Figure 1, the major steps of the algorithm are
described next.

2.5.1. Generate invariants. Normalized structure-factor magnitudes (jEj’s) are generated by
standard scaling methods and the triplet invariants that involve the largest corresponding jEj’s
are generated. Parameter choices that must be made at this stage include the numbers of
phases and triplets to be used. The total number of invariants is ordinarily chosen to be at
least 100 times the number of atoms whose positions are to be determined.

2.5.2. Generate trial structure. A trial structure or model is generated that is comprised of
a number of randomly positioned atoms equal to the number of atoms in the unit cell. The
starting coordinate sets are subject to the restrictions that no two atoms are closer than a
specified distance (normally 1.2Å) and that no atom is within bonding distance of more than
four atoms.
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FIGURE 1. Flow chart for Shake-and-Bake, the minimal-function phase refinement
and real-space filtering procedure.

2.5.3. Structure-factor calculation. A normalized structure-factor calculation (see Eq.(1.1))
based on the trial coordinates is used to compute initial values for all the desired phases
simultaneously. In subsequent cycles, peaks selected from the most recent Fourier series are
used as atoms to generate new phase values.

2.5.4. Phase refinement. The values of the phases are perturbed by a parameter-shift method
in whichR('), which measures the mean-square difference between estimated and calculated
structure invariants, is reduced in value. R(') is initially computed on the basis of the set of
phase values obtained from the structure-factor calculation in step C. The phase set is ordered
in decreasing magnitude of the associated jEj’s. The value of the first phase is incremented by
a preset amount and R(') is recalculated. If the new calculated value of R(') is lower than
the previous one, the value of the first phase is incremented again by the preset amount. This
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is continued until R(') no longer decreases or until a predetermined number of increments
has been applied to the first phase. A completely analogous course is taken if, on the initial
incrementation, R(') increases, except that the value of the first phase is decremented until
R(') no longer decreases or until the predetermined number of decrements has been applied.
The remaining phase values are varied in sequence as just described. Note that, when the
ith phase value is varied, the new values determined for the previous i � 1 phases are used
immediately in the calculation of R('). The step size and number of steps are variables
whose values must be chosen.

2.5.5. Fourier summation. Fourier summation is used to transform phase information into
an electron-density map (Refer to Eq.(1.2)).

2.5.6. Real-space filtering (Identities among phases imposed). Image enhancement is ac-
complished by a discrete electron-density modification consisting of the selection of a spec-
ified number of the largest peaks on the Fourier map for use in the next structure-factor cal-
culation. The simple choice, in each cycle, of a number of the largest peaks corresponding to
the number of expected atoms has given satisfactory results. No minimum-interpeak-distance
criterion is applied at this stage.

Steps C, D, E, and F are repeated until a pre-assigned number of cycles has been com-
pleted or until the process converges. The smallest of the final values of the minimal function
(one for each trial) reveals the constrained global minimum of the minimal function R(')
and the true values of the phases.

3. Single Wavelength Anomalous Scattering (SAS) Data are Available

3.1. Introduction

In this case the normalized structure factors EH (compare Eq.(1.1)) are defined by

(3.1) EH =
1

�2

NX
j=1

fj exp(2�iH � rj)

(3.2) �2 =

NX
j=1

jfjj
2

where N is the number of atoms in the unit cell, rj is the position vector of the atom labeled
j and fj is the (complex-valued) atomic scattering factor, presumed to be known.

3.2. The Probabilistic Background

With the assumption that SAS diffraction data are available, the conditional probability
distribution P (�) of the triplet

(3.3) 'HK = 'H + 'K + '
�H�K;
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given the six magnitudes

(3.4) jEHj; jE�Hj; jEKj; jE�Kj; jEH+Kj; jE�H�Kj

is known to be [4]

(3.5) P (�) = [2�I0(AHK)]
�1

expfAHK cos(�� !HK)g

in which I0 is the Modified Bessel Function and AHK and !HK are expressed in terms of the
six magnitudes (3.4) and the (presumed known) complex-valued atomic scattering factors f .
Compare Eq.(3.5) with Eq.(2.2) and note that the AHK of Eq.(3.5) is no longer defined by
Eq.(2.3) but is instead a much more complicated function of the six magnitudes (3.4) and the
atomic scattering factors f . Hence, AHK(> 0) and !HK are here assumed to be known for
every pair (H;K). Note that, owing to the anomalous scattering, the six magnitudes (3.4)
are, in general, distinct in contrast to the normal case when jE

�Hj = jEHj, etc.
In view of (3.5), the most probable value of 'HK is !HK, and the larger the value of AHK

the better is this estimate of 'HK:

(3.6) 'HK = 'H + 'K + '
�H�K � !HK

3.3. The System of SAS Tangent Equations

Fix the reciprocal lattice vectorH. From Eq.(3.6)

(3.7) 'H � !HK � 'K � '
�H�K

(3.8) sin'H � sin(!HK � 'K � '
�H�K)

which has approximate validity for each fixed value of K. Averaging the right-hand side of
(3.8) overK, naturally using weights AHK, one obtains

(3.9) sin'H �
1P

K
AHK

X
K

AHK sin(!HK � 'K � '
�H�K)

Similarly

(3.10) cos'H �
1P

K
AHK

X
K

AHK cos(!HK � 'K � '
�H�K)

Eqs.(3.9) and (3.10) imply

(3.11) tan'H �

P
K
AHK sin(!HK � 'K � '

�H�K)P
K
AHK cos(!HK � 'K � '

�H�K)

the system of SAS tangent equations. For each fixed H, Eq.(3.11) yields two values for 'H
differing by �. Eqs.(3.9) and (3.10) serve to fix the quadrant.
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3.4. The Maximal Function M(')

One defines the maximal function M('), a function of the phases ', by means of

(3.12) M(') =
1P

H;KAHK

X
H;K

AHK cos('HK � !HK)

and infers that M(') has a global maximum when all the phases appearing in Eq.(3.12) are
set equal to their true values.

3.5. The Maximal Property of the System of SAS Tangent Equations

Fundamental maximal property. Fix H. Assume that the values of all phases other
than 'H are specified arbitrarily. Then the maximal function M(') becomes a function,
M('Hj'), of the single phase 'H. As a function of 'H, M('Hj') has a unique maximum
in the whole interval (0; 2�) and the value of 'H that maximizes M('Hj') is given by the
SAS tangent equation (3.11).

3.6. Solving the System of SAS Tangent Equations

Specify arbitrarily initial values for all the phases '. Fix H. Calculate a new value
for the phase 'H by means of the SAS tangent equations (3.9) to (3.11), in this way, in
view of x 3.5, increasing the initial value of the maximal function M('). Fix H 0 6= H.
Calculate a new value for 'H0 , again using (3.9) to (3.11), the new value for 'H, and initial
values for the remaining phases, thus increasing still further the value of M('). Continue
in this way to obtain new values for all the phases, thus completing the first iteration and,
in the process, continuously increasing the value of M('). Complete as many iterations as
necessary in order to secure convergence. Convergence is assured since the iterative process
yields a monotonically increasing sequence of numbers, the values of M('), bounded above
by unity. Evidently also, the process leads to a local maximum of M(') and a corresponding
set of values for all the phases ' which depends on the values of the phases chosen initially.
By choosing different starting values for the phases one obtains different solutions for the
system of SAS tangent equations and different local maxima of M('). That solution yielding
the global maximum of M(') is the one we seek.

3.7. The Linear Congruence Connection

The problem of going from the estimated values !HK of the three-phase structure in-
variants 'HK to the values of the individual phases ' may be formulated as the problem of
solving the redundant system of linear congruences

(3.13) 'H + 'K + '
�H�K � !HK (modulo 2�)

each with weight AHK. Our solution of the system of SAS tangent equations also yields the
solution of the redundant system of linear congruences (3.13).
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