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ABSTRACT. This introductory paper presents a method for the analysis of differential
equations with polynomial coefficients which also provides a further insight into the
Stokes Phenomenon. The method consists of a chain of steps based on the concept
of the Stokes Structure and Fourier-like transforms adjusted to this Stokes Structure.
Although the main object here is Bessel’s equation our approach can be extended to
more general matrix equations. It will be shown (i) how to derive the Stokes Struc-
ture directly from differential equations without any previous knowledge of Bessel or
hypergeometric functions, (ii) how to adjust Fourier transforms to the Stokes Struc-
ture, (iii) how to answer questions on the interrelation between formal and actual
solutions of Bessel’s equation using Fourier Analysis, and finally (iv) how to evaluate
the coefficients of the Stokes Structure, thus providing a new insight into the Stokes
Phenomenon.

1. Introduction

In [4], [5] an approach for the study of a general class of matrix differential equations
with polynomial coefficients was presented. However, this study does not cover many equa-
tions which require special attention. One such case is the classical Bessel’s equation. It was
explained in [3] how to derive properties of solutions of Bessel’s equation from the Fourier-
dual hypergeometric equations. In particular, it was shown how the monodromic properties
of hypergeometric functions are transfered to solutions of Bessel’s equation as algebraic re-
lations.
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The Hankel functions H (1)
� (z) and H

(2)
� (z) of order � (or Bessel functions of the third

kind) are unique solutions of Bessel’s equation

(1.1) y00 +
1

z
y0 +

�
1�

�2

z2

�
y = 0

satisfying the Hankel inequalities (or expansions)

(1.2) H (1)
�

(z) =

 
2

�z

!1=2

ei(z���=2��=4) (1 + o(1))

(1.3) H (2)
�

(z) =

 
2

�z

!1=2

e�i(z���=2��=4) (1 + o(1))

as z ! +1. They can be continued analytically as single-valued functions to the whole
Riemann surface of log z : 0 < jzj <1; �1 < arg z < +1.

The functions P1(z); P2(z) defined by

(1.4) H (1)
�
(z) �

 
2

�z

!1=2

ei(z���=2��=4) P1(z)

(1.5) H (2)
�
(z) �

 
2

�z

!1=2

e�i(z���=2��=4) P2(z)

are known as the phase amplitudes of the Hankel functions H (1)
� (z); H

(2)
� (z) respectively. It

follows that

(1.6) P1(z) = 1 + o(1); P2(z) = 1 + o(1)

as z ! +1: They can also be extended as analytic single-valued functions to the whole
Riemann surface of log z. Moreover, they satisfy respectively the following pair of differential
equations

(1.7) L1P1(z) = 0; L2P2(z) = 0

with the pair of differential operators L1; L2 defined by

(1.8) L1 = z2D2
z
+ 2iz2Dz � b

and

(1.9) L2 = z2D2
z
� 2iz2Dz � b

where b = �2 � 1=4 and Dz

def
= d

dz
.
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On the other hand there exists a unique pair of factorially divergent power series

(1.10) P̂1(z) = 1 +
1X

m=1

a1;m

zm
; P̂2(z) = 1 +

1X
m=1

a2;m

zm

formally satisfying equations (1.7) respectively.
It is natural to introduce the Fourier-dual operators L�1; L

�
2 to L1; L2

(1.11) L
�
1

def
= � (� � 2i)D2

�
+ 2 (� � i)D� � b

(1.12) L
�
2

def
= � (� + 2i)D2

�
� 2 (� + i)D� � b

where D�

def
= d

d�
:

There exists a unique pair F1 (�) ; F2 (�) of solutions of L�1F1 (�) = 0, L�2F2 (�) = 0
respectively, analytic at the singular point � = 0. This pair is nothing but the pair of Gauss
hypergeometric functions

(1.13) F1 (�) = F

�
1

2
� �;

1

2
+ �; 1; �=2i

�

(1.14) F2 (�) = F

�
1

2
� �;

1

2
+ �; 1;��=2i

�
:

It is not difficult to check that the formal power series P̂1(z); P̂2(z) can be represented
respectively as formal Laplace transforms of the formal hypergeometric series

(1.15)
1X

m=0

(1
2
+ �)m(

1
2
� �)m

(2i)m(1)mm!
�m

(1.16)
1X

m=0

(�1)m
(1
2
+ �)m(

1
2
� �)m

(2i)m(1)mm!
�m

where

(1.17) (a)m
def
= a(a + 1) : : : (a+m� 1) =

�(a +m)

�(a)
;

while the phase amplitudes P1 (z) ; P2 (z) can be represented as classical Laplace transforms
of (1.13), (1.14) respectively, see [3]. In other words, these formal series and the phase am-
plitudes are generated in the same manner by different branches of the same hypergeometric
function.
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Moreover, using (1.4), (1.5) we obtain the following integral representations of Hankel
functions

(1.18) H (1)
�

(z) =

�
2z

�

�1=2

ei(z�
1

2
��� 1

4
�)
Z +1

0

e�z�F

�
1

2
� �;

1

2
+ �; 1;

�

2i

�
d�

(1.19) H (2)
�

(z) =

�
2z

�

�1=2

e�i(z�
1

2
���

1

4
�)
Z +1

0

e�z�F

�
1

2
� �;

1

2
+ �; 1;�

�

2i

�
d�;

which, upon using the monodromic properties of hypergeometric functions, yield the follow-
ing monodromic relation, see [3]

(1.20)

�
1 0
�T2e

2iz 1

��
P1 (ze

2�i)
P2 (ze

2�i)

�
=

�
1 T1e

�2iz

0 1

��
P1 (z)
P2 (z)

�
where T1; T2 are complex constants.

This relation suggests an algebraic structure for the phase amplitudes P1 (z) ; P2 (z) on
the Riemann surface of log z, which will form the basis of our present investigation. The
principal idea of this paper is to apply Fourier transforms to this algebraic structure rather than
to the original differential equation. It should be noted in fact that our approach presented in
Sections 2, 6, 7, 8, 9, 10 to follow does not depend on the original differential equation.

2. The Stokes Structure S

DEFINITION A pair of functions P1(z) ; P2(z)

(i) analytic on the Riemann surface of log z with at most exponential growth at z =1 in
every sector S�;� = fz : �1 < � < arg z < � < +1g

(ii) satisfying inequalities

(2.1) P1(z) = 1 + o(1) ; z !1; z 2 Sc(1)

(2.2) P2(z) = 1 + o(1) ; z !1; z 2 Sc(2)

in the closed subsectors

(2.3) Sc(1) � S(1)
def
= fz : �� < arg z < 2�; 0 < jzj <1g

(2.4) Sc(2) � S(2)
def
= fz : �2� < arg z < �; 0 < jzj <1g

(iii) satisfying the monodromic relation (1.20) with complex constants T1; T2 written as

(2.5) P1(ze
2�i) = P1(z) + T1P2(z)e

�2iz

(2.6) P2(ze
2�i) = P2(z) + T2P1(ze

2�i)e2iz
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are the elements of the Stokes Structure

(2.7) S = fP1(z); P2(z)g:

3. From Differential Equation to S

This technique does not require any previous knowledge or properties of the solutions of
(1.1) nor of the hypergeometric functions.

DEFINITION The rays

(3.1) l = fz : Re(iz) = 0g

are called separationrays for (1.1).
Let us look for solutions y1; y2 of (1.1)

(3.2) y1(z) =

 
2

�z

!1=2

ei(z���=2��=4) P1(z)

(3.3) y2(z) =

 
2

�z

!1=2

e�i(z���=2��=4) P2(z)

such that

(3.4) P1(z) = 1 + o(1); P2(z) = 1 + o(1)

as z !1 along a separation ray l on the Riemann surface of log z.
In terms of P1(z) ; P2(z) the differential equations (1.7) together with conditions (3.4) can

be equivalently rewritten respectively as

(3.5) P1(z) = 1�
b

2i

Z 1l

z

P1(w)

w2
dw +

b

2i

Z 1l

0

e2iw
P1(w + z)

(w + z)2
dw

(3.6) P2(z) = 1 +
b

2i

Z 1l

z

P2(w)

w2
dw �

b

2i

Z 1l

0

e�2iw
P2(w + z)

(w + z)2
dw

with 1l =1 � eiarg l.
The integral equations (3.5), (3.6) can be analyzed using successive iterations to con-

struct the unique solutions P1(z) ; P2(z) satisfying inequalities (3.4) respectively, see, for
example [2]. Further analysis of these integral equations for a specially chosen l shows that
P1 (z) ; P2 (z) form in fact the Stokes Structure S defined above by (2.7).
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4. Formal and Actual Solutions

Choosing the separation ray arg z = 0 as the paths of integration in (3.5), (3.6) respec-
tively to construct the solutions P1(z); P2(z) and using the uniqueness of this pair and that
of H(1)

� (z); H
(2)
� (z) also yield

(4.1) H (1)
�
(z) � y1(z) =

 
2

�z

!1=2

ei(z���=2��=4) P1(z)

(4.2) H (2)
�
(z) � y2(z) =

 
2

�z

!1=2

e�i(z���=2��=4) P2(z)

which are identical to (1.4), (1.5). Thus the solutions of (3.5), (3.6) for this chosen separa-
tion ray are nothing but the phase amplitudes P1(z); P2(z) of the Hankel functions H (1)

� (z);

H
(2)
� (z) respectively.

Another pair of linearly independent solutions of (1.1) is

(4.3) ŷ1(z) =

 
2

�z

!1=2

ei(z���=2��=4) P̂1(z)

(4.4) ŷ2(z) =

 
2

�z

!1=2

e�i(z���=2��=4) P̂2(z)

where

(4.5) P̂1(z) =
1X

m=0

(1
2
+ �)m(

1
2
� �)m

(2i)m(1)m

1

zm

(4.6) P̂2(z) =
1X

m=0

(�1)m
(1
2
+ �)m(

1
2
� �)m

(2i)m(1)m

1

zm
:

Formal substitution of these solutions into (1.1) yield, after canceling the exponentials,
power series in z�1 with zero coefficients. However, the above power series are clearly
factorially divergent for any z if � is not a half integer. Thus, these solutions can be regarded
as formal solutions as opposed to actual solutions.

Three natural questions arise immediately:
(1) how to relate the pair of formal solutions one to another,
(2) how to relate the pair of formal solutions to actual solutions H (1)

� (z); H(2)
� (z),

(3) how to decode properly the symbol o (1) in the expansions above.
Stokes (1857) was the first one to formulate and answer the first two questions for Airy’s

differential equation y00 � zy = 0 related to Bessel’s equation for � = 1
3
. To answer the third
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question, Poincaré (1886) considered formal solutions as asymptotic representations of actual
solutions. However, as discovered a century later, see [1], this approach is not satisfactory
since it does not answer question (1) altogether, only answers partially question (2), and does
not provide sufficient information about the remainder.

5. The Stokes Phenomenon

Using (4.1), (4.2) the monodromic relations (2.5), (2.6) can be rewritten in terms of
H

(1)
� (z), H(2)

� (z) as

(5.1) H (1)
�

�
ze2�i

�
= �H(1)

�
(z) + ie�i��T1H

(2)
�

(z)

(5.2) H (2)
�

�
ze2�i

�
= �H(2)

�
(z) + iei��T2H

(1)
�

�
ze2�i

�
:

These, in turn, yield extended Hankel expansions valid outside the sectors in (2.3), (2.4).
All these Hankel expansions are of the form

(5.3) z�1=2
�
A (�) eiz +B (�) e�iz

�
:

Again, Stokes (1857) was the first to discover that the constants A (�) and B (�) are
discontinuous as arg z changes continuously when crossing the separation rays. The existence
of such discontinuities is called the Stokes Phenomenon and the corresponding values of
the jumps in A (�) ; B (�) can be expressed in terms of connection coefficients T1; T2 very
important in many applications. A modern insight into the Stokes Phenomenon can be found
in [1].

A fourth question then arises:
(4) how to evaluate the connection coefficients T1; T2:
Starting with the Stokes Structure we will present a technique that answers questions

(1)-(3). The culmination of our approach will be to answer question (4), obtaining explicit
expressions for the connection coefficients independently of any knowledge of the actual
solutions of the differential equation.

6. Fourier-Like Transforms Adjusted to S

Let P1 (z) ; P2 (z) be elements ofS with (unknown) T1; T2 in its monodromic relations
(2.5), (2.6) and Sc (1) � S (1) ; Sc (2) � S (2) a pair of closed subsectors with angles greater
than �:

Let

(6.1) H (z) = a0z (1 + o (1)) ; z !1

be analytic on the Riemann surface of log z; and

(6.2) C (1=z) = c0 + c1z + : : :

an entire function with complex a0 6= 0; c0; c1; : : :.



394 V. Gurarii, et al. / How to Use the Fourier Transform in Asymptotic Analysis

We define the general Fourier-like transforms of Pj (z), j = 1; 2 as

(6.3) Fj (�)
def
=

1

2�i

Z

(j)

eH(z�)C (z)Pj (z) dz=z; j = 1; 2

with paths of integration 
 (1) ; 
 (2) as boundaries of Sc (1), Sc (2) respectively, oriented so
that Sc (j) are to the right of 
 (j).

7. Main Result

THEOREM 1. Let P1 (z) ; P2 (z) be the elements of the Stokes Structure S:
Then for each j = 1; 2 in the dual complex ��plane
(i) there exists a ray lj emanating from the origin such that Fj (�) is continuous for � 2 lj;

and Fj (�) can be continued analytically to some open sector containing the ray lj;
(ii) there exists a neighborhood of the origin such that Fj (�) can be further continued

analytically to this neighborhood as a single-valued function;
(iii) moreover, Fj (�) can be continued analytically to the whole ��plane along every path

not crossing the point

(7.1) �0 � �0;j =
2i

a0
(�1)j�1 :

8. From S to Formal Power Series

Consider the special cases of Fourier-like transforms (6.3) for H (z) = z ; C (z) = 1.
These are nothing but the Borel transforms of Pj(z)

(8.1) F
(0)
j

(�)
def
=

1

2�i

Z

(j)

ez�Pj (z) dz=z; j = 1; 2:

Their inversion formulae are nothing but the Laplace transforms of F (0)

j
(�)

(8.2) Pj (z) = z

Z
lj

e�z�F
(0)

j
(�) d�; j = 1; 2:

Due to (i), (ii) of Theorem 1 the integrals (8.1) are absolutely convergent for � 2 lj and
F

(0)

j
(�) can be represented by their Taylor series, which can be regarded as formal power

series in �

(8.3) F̂
(0)
j

(�)
def
=

1X
k=0

f
(0)

j;k
�k:

Substituting F̂ (0)

j
(�) for F (0)

j
(�) in (8.2) and writing

(8.4) aj;k
def
= k!f

(0)

j;k
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yield

(8.5) P̂
(0)

j
(z)

fps
= z

Z
lj

e�z�F̂
(0)

j
(�) d� =

1X
k=0

aj;k

zk
; j = 1; 2:

The symbol fps means that (8.5) should be perceived on the level of formal power series.

9. Formal Series as Strong Expansions

Although for an element Pj of the Stokes Structure (2.7)

(9.1) lim
z!1 z2Sc(j)

Pj(z) = 1;

it is not at all obvious that the Stokes Structure guarantees the next limits

(9.2) lim
z!1 z2Sc(j)

(Pj(z)� 1)z:

However, the formal series

(9.3)
1X
k=0

a1;k

zk
;

1X
k=0

a2;k

zk

are Poincaré asymptotic expansions for P1 (z) ; P2 (z) in sectors S (1) ; S (2) respectively.
This means that for any subsector Sc (j) of S (j) and for z 2 Sc (j) there exists MN > 0 such
that the following estimates are valid for N = 1; 2; : : :

(9.4)

�����Pj (z)�
N�1X
k=0

aj;k

zk

����� < MN

jzj
N
:

It should be noted, however, that these approximations are too rough to provide real
information about the behavior of the remainders

(9.5) Pj (z)�
N�1X
k=0

aj;k

zk

since we don’t know how M depends on N .
In fact the formal series (9.3) are much better and more precise asymptotic expansions

for Pj (z) than the Poincaré expansions.
THEOREM 2. For any subsector Sc (j) of S (j) and for z 2 Sc (j) there exists a > 0

depending only on Sc (j) such that the following estimates are valid for N = 1; 2; : : :

(9.6)

�����Pj (z)�
N�1X
k=0

aj;k

zk

����� < MaNN !

jzj
N

:

These expansions are known as strong asymptotic expansions, see [7], [6]. In contrast to
Poincaré expansions they have the following uniqueness property:
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WATSON’S THEOREM. Watson’s Theorem If P1 (z) ; P2 (z) are analytic functions in
a sector S with its angle not less than �; and

P1

k=0
ak

zk
is their strong asymptotic expansion in

S; then P1 (z) � P2 (z) :

The inequalities (9.6) answer our question (3).

10. Power Series Representation of Fj (�)

Now that we have
P1

k=0

aj;k

zk
it is natural to formally substitute these for Pj (z) into the

general Fourier-like transforms (6.3) to yield the formal Fourier-like transforms

(10.1) F̂j (�)
def
=

1

2�i

Z

(j)

eH(z�)C (z) P̂
(0)

j
(z) dz=z

resulting in the power series in �

(10.2) F̂j (�) =
1X
k=0

fj;k�
k
�

1X
k=0

�ksk

 
kX

m=0

aj;mck�m

!
with

(10.3) sk =
1

2�i

Z

�(j)

eH(z) 1

zk+1
dz; k = 0; 1; : : :

and

(10.4) 
� (j) = 
 (j) ei arg �:

THEOREM 3. The power series F̂j (�) are absolutely convergent and thus represent the
analytic functions

(10.5) eFj (�) =
1X
k=0

�k

 
sk

 
kX

m=0

aj;mck�m

!!

inside the circle of radius 2
ja0j

with its center at � = 0: Moreover, if � 2 lj and j�j < 2
ja0j

then

(10.6) eFj (�) � Fj (�) :

Thus, the Fourier-like transforms Fj (�) can be represented both by the integral transforms
(6.3) and by the convergent Taylor series (10.5) for � 2 lj; j�j < j�0j; where lj and �0 are
defined in Theorem 1 (i) and (iii), (7.1) respectively.
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11. Evaluation of Borel Transforms

Now let us return to Bessel’s equation (1.1) and remember that the elements P1 (z) ; P2 (z)

of the Stokes Structure (2.7) are the phase amplitudes of the Hankel functions H (1)
� (z) ;

H
(2)
� (z) :

It follows from Theorem 2 that in particular the formal series (9.3) are Poincaré asymp-
totic expansions of P1 (z) ; P2 (z). On the other hand, one can derive from integral equations
(3.5), (3.6) that the formal power series (4.5), (4.6) are also Poincaré asymptotic expansions
of P1 (z) ; P2 (z). It should be noted, however, that it is a hard problem to derive from in-
tegral equations (3.5), (3.6) that the formal power series (4.5), (4.6) are strong asymptotic
expansions for P1 (z) ; P2 (z) :

The uniqueness property of Poincaré asymptotic expansions yields

(11.1) a1;k =
(1
2
+ �)k(

1
2
� �)k

(2i)k(1)k

(11.2) a2;k = (�1)k
(1
2
+ �)k(

1
2
� �)k

(2i)k(1)k

that is

(11.3) P̂j (z) � P̂
(0)

j
(z)

and the left-, right-hand sides of (11.3) are defined by (8.5) and by (4.5), (4.6) respectively.
It is worth noting that (11.3) is in fact the converse of an important principle that was

named in [3] as the Principle of Functional Closure: If a formal series satisfying a differen-
tial-difference-algebraic relation can be summed to an analytic function in a region of the
complex plane, then this function satisfies exactly the same relation in this region.

It follows from (8.4) and (8.3) that

(11.4) F̂
(0)

j
(�) = F̂

�
1

2
+ �;

1

2
� �; 1;�

�

2i

�
where F̂

�
1
2
+ �; 1

2
� �; 1;� �

2i

�
are power series expansions in � of Gauss’ hypergeometric

function
F
�
1
2
+ �; 1

2
� �; 1;� �

2i

�
; respectively.

12. Interrelation between Solutions

It follows from (11.4) and (8.1) that the Borel transforms of the phase amplitudes of the
Hankel functions are in fact the hypergeometric functions, while the formal Borel transforms
of the formal power series are the corresponding (formal) hypergeometric series.
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The following relations are valid

(12.1) F

�
1

2
+ �;

1

2
� �; 1;

�

2i

�
=

1

2�i

Z

(1)

e�zP1 (z) dz=z

(12.2) F

�
1

2
+ �;

1

2
� �; 1;�

�

2i

�
=

1

2�i

Z

(2)

e�zP2 (z) dz=z

(12.3) F̂

�
1

2
+ �;

1

2
� �; 1;

�

2i

�
def
=

1

2�i

Z

(1)

e�zP̂1 (z) dz=z

(12.4) F̂

�
1

2
+ �;

1

2
� �; 1;�

�

2i

�
def
=

1

2�i

Z

(2)

e�zP̂2 (z) dz=z:

The representations (12.1)-(12.4) together with their respective inversion formulae

(12.5) P1 (z) = z

Z 1

0

e�z�F

�
1

2
+ �;

1

2
� �; 1;

�

2i

�
d�

(12.6) P2 (z) = z

Z 1

0

e�z�F

�
1

2
+ �;

1

2
� �; 1;�

�

2i

�
d�

(12.7) P̂1 (z)
def
= z

Z 1

0

e�z�F̂

�
1

2
+ �;

1

2
� �; 1;

�

2i

�
d�

(12.8) P̂2 (z)
def
= z

Z 1

0

e�z�F̂

�
1

2
+ �;

1

2
� �; 1;�

�

2i

�
d�

reveal the following one-to-one correspondences (denoted by the symbol $) below

(12.9)
P̂j (z)$ F̂j (�) � F̂

�
1
2
+ �; 1

2
� �; 1;� �

2i

�
$

$ F
�
1
2
+ �; 1

2
� �; 1;� �

2i

�
$ Pj (z) :

These interrelations show that both formal series P̂1 (z) ; P̂2 (z) and actual functions P1 (z) ,
P2 (z) ; are generated in the same manner by different branches of the same hypergeometric
function, thus answering questions (1) and (2).

REMARK
Formulae (12.5), (12.6) together with (4.1), (4.2) yield again the integral representations

(1.18), (1.19) for Hankel Functions. It is curious that we could not find these representa-
tions, the most principal in our context, in the classical literature on Bessel functions. In the
literature, the Hankel expansions are commonly derived from the representations

(12.10) H (1)
�

(z) =
�
�
1
2
� �
� �

z

2

��
�3=2i

Z

1

eizt
�
t2 � 1

��� 1

2 dt
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(12.11) H (2)
�

(z) =
�
�
1
2
� �
� �

z

2

��
�3=2i

Z

2

e�izt
�
t2 � 1

��� 1

2 dt

with 
1; 
2 simple loops bypassing t = �1 but not enclosing t = �1, respectively, jarg zj <
�

2
; and � 6= 1

2
; 3
2
; : : : :

These are derived by reducing Bessel’s equation to

(12.12) zw00 + (2� + 1)w0 + zw = 0

for the variable w = z��y; and then applying the Laplace transform to this special equa-
tion with linear coefficients. Unfortunately, this approach is generally not possible for other
differential equations.

13. The Connection Coefficients

Consider the Fourier-like transforms F1 (�) ; F2 (�) of P1 (z) ; P2 (z) defined by (6.3)
with

(13.1) H (z) = 2iz; C (z) = �

b�

z
; b = �2 �

1

4
:

(13.2) Fj (�)
def
= �

b

2i

Z

(j)

e2i�z
1

z
Pj (z) dz=z; j = 1; 2:

THEOREM 4. Let P1 (z) ; P2 (z) be the phase amplitudes of H (1)
� (z), H�

(2) (z) with
Fourier-like transforms F1 (�) ; F2 (�) defined by (13.2). Then

(i) the only finite singular point of both analytic functions F1 (�) ;�F2 (��) is � = 1
(ii) the limiting values of F1 (�) ; �F2 (��) at � = 1 exist and are equal to connection

coefficients

(13.3) lim
�!1

F1 (�) = T1; lim
�!1

(�F2 (��)) = T2

(iii)

(13.4) Tj = (�1)j
b

2i

Z

�(j)

e(�1)
j�12iz 1

z
Pj (z) dz=z; j = 1; 2

where 
� (j) are obtained by rotating 
 (j) into positions where functions e(�1)
j�12iz

are decreasing for z 2 
� (j) ; j = 1; 2 respectively.
(iv) Moreover, let fj;k be coefficients of power series in (10.2) for H (z) and C (z) given

by (13.1). Then

(13.5) T1 = lim
�!1�0

 
1X
k=0

f1;k�
k

!
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(13.6) T2 = lim
�!1�0

 
1X
k=0

(�1)k+1
f2;k�

k

!
:

It follows from Theorems 1 and 2 that for j�j < 1

(13.7)

F1 (�) = �2�bi
1X

m=0

1

(m + 1)!

�
1
2
� �
�
m

�
1
2
+ �
�
m

m!
�m

F2 (�) = 2�bi
1X

m=0

(�1)k

(m+ 1)!

�
1
2
� �
�
m

�
1
2
+ �
�
m

m!
�m

hence

(13.8) F1 (�) = �F2 (��) = �2�ibF

�
1

2
� �;

1

2
+ �; 2; �

�
:

Substituting � = 1 yields

(13.9) Tj = �2�biF

�
1

2
� �;

1

2
+ �; 2; 1

�
; j = 1; 2

which, using Gauss’ formula, reduces to

(13.10) Tj =
�2�bi

�
�
1 + 1

2
+ �
�
�
�
1 + 1

2
� �
� ; j = 1; 2;

and finally

(13.11) Tj = 2i cos ��; j = 1; 2:

It is worth noting that generally it is impossible to express Tj in terms of known fuctions.
Their integral representation should be used to evaluate them asymptotically for extremal

values of parameters of the differential equation.
Their Taylor series representation should be used for their numerical evaluation.

14. Conclusions

We have shown that the Stokes Structure S is of fundamental importance. Starting with
Bessel’s equation (1.1) we derived S and introduced and studied Fourier-like transforms
adjusted to S. These yielded formal power series that are in fact formal solutions of (1.7).
Furthermore, as shown by (12.9) the phase amplitudes and their respective formal series are
generated in the same manner by different branches of the same hypergeometric function.
These provide the basis for a systematic chain of steps to answer questions (1), (2), (3), (4)
above, and an approach which can be extended to matrix equations with many applications.
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