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ABSTRACT. We describe research on some classical and non-classical initial-boundary value 
problems stated for pluri-parabolic equations, particularly the construction and investigation of 
difference algorithms for their resolution. We obtain uniqueness results, demonstrate an 
iteration process which reduces the solution of the non-local problem to that of the classical one 
and which converges geometrically, and build averaged decomposition algorithms of parallel 
count for pluri-parabolic equations. 
 

PREFACE. The work is devoted to the investigation and numerical realization problems of 
some mathematical models describing various phenomena. Considered non-classical 
mathematical models represent classical and non-local initial-boundary value problems stated for 
pluri-parabolic equations. Such problems arise during the investigation of most difficult and 
important problems of physics, technique and ecology and various other branches of science. 
The model considered hereby mainly concerns the description and analysis of diffusion and 
displacements of mixtures, particularly pollutions, in the rivers. 
 

Experiments for research of mentioned processes are very expensive and, in some cases, even 
impossible. Application of mathematical modeling, numerical analysis and computation 
technologies through creating virtual images on computers is cost effective and 
 sometimes the only way of studying these phenomena. 
 

To the theoretical investigation of mentioned mathematical models are dedicated the researches 
of such famous mathematicians as J.-L. Lions, S.V. Vladimirov,  A. Bousiani, A.A. Samarskii, 
A.V. Bitsadze, A.M. Il’in, M.A. Sapagovas, B.P. Paniakh, etc. 
 

Thus, for the development and investigation of ecological problems application of mathematical 
methods and information technologies is the one of the most important means of research. 
 

10. STATEMENT OF THE PROBLEM. There is stated the following problem� there is 
searched the function ( ) ( ) ( )DCDCtxu 0,11,2, ∩∈ � satisfying equation 
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in ����������� conditions there is assumed that conditions of compatibility are fulfilled; α � β �

iα ( )Pi ,0= are given constants� i1ϕ ( )mi ,1= � ( )tx,2ϕ � ( )tx,ϕ and ( )txf , are prescribed, 

sufficiently smooth functions  defined on the corresponding definition areas; 
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� ν& is the normal of Γ boundary� ( )ν&,iOx

( )ni ,1= are the angles between iOx axis and ν& normal vector� D B ( )mn + �dimensional 

area in mnR + space� Ω×=GD � ( ) ( ) Dttxxtx mn ∈= ,...,,,...,, 11 �
nRG ⊂ � Γ is sufficiently 

smooth boundary of Γ×= GG � in addition −+ Γ∪Γ=Γ � in the G there are given iΓ
( )Pi ,0= curves crossing the G without touching −Γ and there exists diffeomorphism ( )⋅iI

between iΓ curves and −Γ boundary� ( ) Γ=Γ i
iI ( )Pi ,0= � ( ) ( )mTT ,0,0 1 ××=Ω � � where

iT ( )mi ,0= are known constants� There is assumed that the following conditions are satisfied�
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(B) the coefficients of L operator are  continuous functions in D �

(C) ( ) 0, ≤txc  in D �

For the pluri-parabolic operator the principle of maximum, which represents the analogue of 
well-known principle of maximum for the parabolic operator is proved. 
 

20. UNIQUENESS OF SOLUTION. There is investigated the question of uniqueness for the 
problem stated in the previous paragraph. Using the principle of maximum the following 
theorem is proved: 
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where i2ϕ � i3ϕ � ( )ni ,1= are sufficiently smooth prescribed functions in the corresponding 

areas, { } P

kk 0=ξ  are given points 100 lP <≤≤< ξξ � � There is proved the following theorem: 
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 and there exists the solution of 

the problem (2.1)-(2.4), then solution is unique. 
 

30. ITERATION METHOD. For the resolution of the problem stated in paragraph one there is 
suggested the iteration process, 
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Theorema 3.1. If in (2.3.4) condition 0=β , αα <∑
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the problem ������������ then the iteration process (3.1)-(3.4) converges to the exact solution of 
the problem (1.1)-(1.4) with the speed of geometrical progression. 
 
40. DIFFERENCE SCHEME. There is considered the following problem: there has to be found 
the function ( ) ( ) ( ) ( )( ) [ ] [ ] [ ]( )211

0,0,1
211

1,1,2 ,0,0,0,0,0,0, TTlCTTlCtxu ××∩××∈ , satisfying the 
equation 

( ) ( ) ( ) ( )txf
t

txu

t

txu

x

txu
,

,,,

21
2

2

=
∂

∂
−

∂
∂

−
∂

∂
, 

( )1,0 lx ∈ , ( )11 ,0 Tt ∈ , ( )22 ,0 Tt ∈ , 
initial conditions 

( ) ( )
( ) ( ) 




≤≤≤≤=
≤≤≤≤=

,0,0,,,0,,

,0,0,,,0,

1111121

2212112

Ttlxtxtxu

Ttlxtxtxu

ϕ
ϕ

and classical boundary limitations 
( ) ( )
( ) ( ) 




≤≤≤≤=
≤≤≤≤=

.0,0,,,,

,0,0,,,,0

2211213211

221121221

TtTtttttlu

TtTtttttu

ϕ
ϕ

 

(2.4) 

(3.2) 

(3.3) 

(3.4) 

(3.1) 

(4.1) 

(4.2) 

(4.3) 



 4 

On the regular grid 
21ττωh  there is constructed the following finite-difference problem 
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where kj
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50. EXPLICIT AND IMPLICIT FINITE DIFFERENCE SCHEMES. There are considered 
two explicit and two implicit schemes. They are obtained by selecting the concrete parameters iθ
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where is assumed, that τττ ≡= 21 � Simulation of difference equation (5.1) consists of five grid 
points (see pic. 1). The following theorem is true: 
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1,1 −= Ni , 1,0 1 −= Nj , 1,0 2 −= Nk ,
with simulation which consists of five grid points (see pic. 3).
Theorem 5.3. The scheme (5.3), (4.5), (4.6) is absolutely stable and the solution converges to 
the exact solution of the problem  (4.1)-(4.3) in the sense of energetic norm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When 2/1321 === θθθ , 14 =θ  and 05 =θ , there is obtained another implicit scheme: 
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Theorem 2.5.4. The scheme (5.4), (4.5), (4.6) is absolutely stable and its solution converges to 
the exact solution of the problem (4.1)-(4.3) in the sense of energetic norm. 
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