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ABSTRACT. We describe research on some classical and non-classical initial-boundary value
problems stated for pluri-parabolic equations, particularly the construction and investigation of
difference algorithms for their resolution. We obtain uniqueness results, demonstrate an
iteration process which reduces the solution of the non-local problem to that of the classical one
and which converges geometrically, and build averaged decomposition algorithms of parallel
count for pluri-parabolic equations.

PREFACE. The work is devoted to the investigation and numerical realization problems of
some mathematicak models describing various phenomena. Considered non-classica
mathematical models represent classical and non-local initial-boundary value problems stated for
pluri-parabolic equations. Such problems arise during the investigation of most difficult and
important problems of physics, technique and ecology and various other branches of science.
The model considered hereby mainly concerns the description and analysis of diffusion and
displacements of mixtures, particularly pollutions, in the rivers.

Experiments for research of mentioned processes are very expensive and, in some cases, even
impossible. Application of mathematica modeling, numerical analysis and computation
technologies through creating virtual images on computersis cost effective and

sometimes the only way of studying these phenomena.

To the theoretical investigation of mentioned mathematical models are dedicated the researches
of such famous mathematicians as J.-L. Lions, S.V. Vladimirov, A. Bousiani, A.A. SamarsKii,
A.V. Bitsadze, A.M. II'in, M.A. Sapagovas, B.P. Paniakh, etc.

Thus, for the development and investigation of ecological problems application of mathematical
methods and information technologies is the one of the most important means of research.

1°. STATEMENT OF THE PROBLEM. There is stated the following problem: there is
searched the function u(x,t)0C>*(D)n (D), satisfying equation

Lu(xt)=f(xt), (xt)dD, (1.1)
and the initial and initial-boundary conditions,
u(x,0,t,,..t, )= ¢, (x.t,,...t,), xOG, 0<t, <T,,i =2,m, B
............................................................... N (12)
u(X,tyyeets,0) = @y (Kot oty ) XOG, 0<t, <, i =mg
u(x,t)=¢,(x,t), xOr*, o<t, <T, i=1m, (1.3)
B2 1 au() = § @l )+ B (14

xtr—, o<t sTi,lsz, x Or, i=0,P,

where
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LEileaij(X’t)aXX Zb xt—+cxt Z




in (1.2)-(1.4) conditions there is assumed that conditions of compatibility are fulfilled; a, S,

a, ([=0,P) aregivenconstants ¢, (=1m), 6,(xt), ¢(xt) ad f(xt) are prescribed,
sufficiently  smooth  functions defined on the corresponding definition areas;

a—u:a—ucos(Oxl,v*)+---+a—ucos(Oxn,v”), v is the norma of I boundary, (Ox,V)
v 0x ox

(=1n) are the angles between Ox, axis and v normal vector; D — (n+m)-dimensiona
area in R™™ space, D=GxQ, (xt)=(X,...x,,t,...t,)0D; GOR", T is sufficiently
smooth boundary of G =GxTI; in additon T=r*0Or"; in the G there are given T
(i=0,P) curves crossing the G without touching I~ and there exists diffeomorphism 1;(0)
between I’ curves and I~ boundary, I,(7')=r (=0,P); Q=(0,T,)x---x(0,T,), where
T (1=0,m) areknown constants. There is assumed that the following conditions are satisfied:

(A) for any (xt)OD point and red vector ¢ =((,,...¢,)#0 the inequality

n n —nN P
ay{?<y a;{,{,say{? istrue, a, a aregiven positive numbers;
=1 NE =1

(B) the coefficientsof L operator are continuous functionsin D ;
©) c(xt)<0inD.

For the pluri-parabolic operator the principle of maximum, which represents the analogue of
well-known principle of maximum for the parabolic operator is proved.

2°. UNIQUENESS OF SOLUTION. There is investigated the question of uniqueness for the
problem stated in the previous paragraph. Using the principle of maximum the following
theorem is proved:

Theorem 2.1. If B=0, a #0, <la| in (24) condition and there exists solution of the

m
2.a;
i=0

problem (1.1)-(1.4), then the solution is unique.

From problem (1.1)-(1.4) under the assumptions, that G=(0,1,)x---x(0,1,), I, =const,

— n 62 m

i=Ln  and LEza”(x,t)a—2+c(x,t)— in  additon a>0, B>0,
i=1 X

i 1= i’
a, =a, =const >0, (lzﬁ) a, =8 (X, Xig1 Xisp0een X t),  the following problem is
obtained:

n d%u m du

24, (x,t)@ +c(x,t)u - Zla = f(x 1), (xt)OD, (2.1)
u(x,0,...t, )=, (xt,,...t,), xOG,0<t, <T,,i=2,m, B
........................................................................ 5 2.2)
Uty ety 3,0)= By (Xt oty ), XOG,0<t, <T, i =Lm-11
u(o,....x,,t)= ¢, (x,,....x,,t), tOQ, 0< x <I,,i =2,n, B
........................................................................ i
(X X0 1,0,8) = @ (X X g 1), tOQ, 0 X <1 :Ln—LE 23



u(x, e X t) = @y (XX ,t), tOQ, 0 x <1,i=1,n,i 22, B
S e es s s e ssses s e s st s es s se s ee s ss s ce e se s ss s et e s et s et e e s as s es e 000 D
U(Xsee X g1 1) = @ (e X pot), tOQ, 0<% <1,i =Ln-1i # n,%
ou(l,, X,,...,t P
[3%+au(|1,xz,...,t):_zoaiu(fi,xz,...,t)+¢31(x2,...,t), (2.4)
1 1=

t0Q, 0sx <I.,i=2n,
where ¢, , ¢, (I :ﬁ) are sufficiently smooth prescribed functions in the corresponding

aress, {&} v, aregivenpoints 0< &, <---< &, <I,. Thereis proved the following theorem:
Theorem 2.2. If in non-local condition (2.4) one of the following two conditions are satisfied: a)

P la,
a, 20 (i:O,P),E%sl; orb) a,<0 (i=0,P), Z|C;—'|sl and there exists the solution of
=0

the problem (2.1)-(2.4), then solution is unique.

3°. ITERATION METHOD. For the resolution of the problem stated in paragraph one there is
suggested the iteration process,

Lu(xt)= f(xt), (x,t)OD, (3.1)

U (x,0,t,,.0t, ) = @y, (X t,,nt ), xOG,0<t, <T, i =2,m, B
..................................................................... 0 (3.2)
U (X, bt 1,0) = @ (X, Lty X O G, 0t < T, =1m—LS
ukt(x,t)=¢,(xt), xOF*, 0<t <T,, i=1m, (3.3)
k+1 p
Bau—(x,t) +aut(x,t) = Zaiuk(xr‘ )+ (xt), (3.4)
=0
xOr~, 0<t <T,, i=1m, x. O, i=0,P,

k=012,..
and the following theorem is proved:

Theorema 3.1. If in (2.3.4) condition 8 =0, ‘Eai <|a| and there exists the unique solution of
i=0

the problem (1.1)-(1.4), then the iteration process (3.1)-(3.4) converges to the exact solution of
the problem (1.1)-(1.4) with the speed of geometrical progression.

4°. DIFFERENCE SCHEME. There is considered the following problem: there has to be found

the function u(x,t)0C?*((0,1,)x(0,T,)%(0,T,))n C**°([0,I]x[0,T] {0,T]), satisfying the
equation

02u(x,t) au(x,t) au(xt) = f (x.t)
x> ot, ot, Y
x0(0,1,), t,0(0,1,), t,0(0,T,),

(4.1)

initial conditions
u(x,0t,)=¢,(xt,) 0<x<l, 0<t, <T,,
u(x,t,,0,)=,(xt,), 0sx<l, 0<t, <T,,[ (4.2)

and classical boundary limitations
u(0,t,,t,)=9,(t,.t,), 0<t, <T,, 0<t, <
0<t <T,0<t, <

T,,0
u(|1’t1!t2)=¢3(t11t2)1 TZ'E (4-3)



On the regular grid ., there is constructed the following finite-difference problem

corresponding to the differential problem (4.1)-(4.3): there has to be found y'* = y(xi .t ,tk)
grid function, satisfying the next difference equation,

jHLk+L _ Aj+1’k Aj,k+1 _ Aj,k Aj+1,k+1 _ Aj,k+1 Aj+1,k _ Aj,k
91 Yi Yi + (1_ 91) Yi Yi + 92 Yi Yi + (1_ 92) Yi Yi —
2 2 1 T,
=0.0,L,y; " +6, (1_ 0, )Lh y o+ (1_ 0, )Gsl—h y e+ (1_ 93)(1_ Os )Lh y o+ (44)
+F/*, i=L,N-1, j=0,N, -1, k=0,N, -1,
and the following conditions
0,k ok =+ _ AN
i =@, ,1=0,N, k=0,N,,
yAO ¢11j0 - o 2 % (45)
YU =0, i=0,N, j=0,N;,H
y(%’k =¢2j’k! j =0,Ny, k=01N21§ (4.6)

yi* =¢s" j=0,N;, k=0,N,.,g
where y/* function is the grid function defined on the w,,,, discrete area corresponding to D,
which corresponds to the u(x.t,,t,) function, 0<6, <1 (| :],_5) are given parameters, F'*,
0., )% and ¢.* are respectively grid functions of [~ f(x,t)] and those used in the left side
of initial and initial-boundary conditions (4.2), (4.3). h, 1,, 17, are steps of regular grid w

ht,t,

correspondingly for x, t, and t, arguments;
ik _

— yi+l

L, yij'k =

2y +yl

h? '
The following theorem is true for the scheme (4.4)-(4.6):
Theorem 4.1. If the function u(x,t) is sufficiently smooth, then the scheme (4.4)-(4.6)
approximates the problem (4.1)-(4.3) with the precision of O(r1 +T, +h2) order, if in the
difference equation (4.4),

ke h? 9% f

a) 91=92=93=%,94+95=1, Fll=—f 22 +O(T12+T22+h2),then

' 12 9x>
wi* =07 +17+h?)
. 1 1 h? 1 h?
b)if 6.=0,==,0.==-——,0.0,-0.0, +6, == - ,
) 1 2 2 3 2 121_1 3Y4 3Ys 5 2 121_2

F_j’k _ _f_j+%’k+% _ h_2 62 f
' ' 12 9x?
where (/" is an approximation error.

+O(r12 +72 + h“), then ¥ =0(t? +12 +h*),

5°. EXPLICIT AND IMPLICIT FINITE DIFFERENCE SCHEMES. There are considered
two explicit and two implicit schemes. They are obtained by selecting the concrete parameters 6,

[ =15) inthe problem (4.4)-(4.6).

If 6,=6, :%, 8, =6, =0, then difference equation (2.4.4) takes the form:
1 yij+1,k+1 _ yij+1,k +1 yij,k+1 _ yij,k +1 yij+1,k+1 _ yij,k+1 +1 yij+1,k _ yij,k _
2 T, 2 T, 2 T, 2 T, (5.1)

=L,y/* +F', i=LN-1, j=0,N,-1, k=0,N, -1,

4



where is assumed, that 7, =7, =7. Simulation of difference equation (5.1) consists of five grid

points (see pic. 1). The following theorem is true:
2

Theorem 5.1. If T < h? the finite-difference scheme (5.1), (4.5), (4.6) is stable and its solution

converges to the solution of the problem (4.1)-(4.3) in the sense of uniform norm.

_j +1,k+1

Yi

pic. 1.

ik e

When 6, =6, =1, 0<6,<1, 8, =0, 6, =1, thereis obtained the following scheme:
jHLk+L JHLK+L kL
Yi i © LY i _ O,L,y " +(1-0,), y) K+ R (5.2
TZ Tl

i=LN-1, j=0,N, -1, k=0,N, -1,
with smulation consisting from seven grid points.

j k+1
j,k+l yl_l

j+Lk
i

_j +1,k+1

Yi

—

yl /Q 1

pic. 2

_j +1,k
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j+Lk

yi +1

Stability and convergence issues are covered bye the next theorem:
2 2

Theorem 5.2. If 7, sh—, T,S———
20, 2@1-6,)
converges to the exact solution of the problem (4.1)-(4.3) with the sense of energetic norm.

, the scheme (5.2), (4.5), (4.6) is stable and its solution

Selecting the parameters in the following way: 6, =6, =0, =0, =1, there is obtained the
equation,

Lkl _ K yj+1,k+1_

Y YLy
TZ Tl

jik+1

Yi

= Ly s (53)



i=LN-1, j=0,N, -1, k=0,N, -1,
with simulation which consists of five grid points (see pic. 3).
Theorem 5.3. The scheme (5.3), (4.5), (4.6) is absolutely stable and the solution converges to
the exact solution of the problem (4.1)-(4.3) in the sense of energetic norm.

- Yia
k ; :
yiJ’ " \ ) LK+
4/ pA

pic. 3

When 6, =6, =6,=1/2, 6, =1 and 6, =0, there is obtained another implicit scheme:
1y j+Lk .k ke .k

y| +1 yi y| +1 yi yl +1 yi _yl =
2 T, 2 T, 2 T, 2 T, (5.4)
- % Ly + % Loy + R
T,=7,=7,i=LN-1, j=0,N, -1, k=0O,N, -1,
with simulation consisting of eight grid points.

Lkl _ ik Lkl _ j+1k

yij—+11' k+1
y_j k+1
pic. 4
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Theorem 2.5.4. The scheme (5.4), (4.5), (4.6) is absolutely stable and its solution converges to
the exact solution of the problem (4.1)-(4.3) in the sense of energetic norm.

6°. DECOMPOSITION METHOD. There is considered the problem (1.1)-(1.4), when
n 2
Lzzg—z, and G=(0,1,)x---x(0,1,). There is constructed the following decomposition

=1 0X;

algorithm of parallel count:



LR + 52yk1+1 """ o™t +1,Ky 1,0 K+ 0
Ulélyﬁl‘ bt ﬁ: 16X2 - flk1 Hee e 1(X1t), E
1
6.1
...................................................... . 6
+ + D
aZykl 1., K, +1
ki +1,.., K e K+ _ ki +1,k,+1,..., K, +1
O, =1ynt‘ ﬁ_ :9)(: fn (th);g
n -
> 0, =10,20t, Do (k=0N,-1)j=1m
1=
yfl,kzﬂ ..... kn*l — ygl,kzﬂ ..... kntl — ... = yrl:l,k2+1 ..... kntl — Vk1k2+1 ..... km+l,k1 =11T1’ B
vkl,k2+1 ..... kn+1 :iilo_i yikl,k2+1 ,,,,, km+1,VO'k2+l ,,,,, K+l :¢110,k2+1 ..... km+1’ B
i 0
--------------------------------------------------------------------------------------------- D
K +LK,+1, K K LK LK — kL, Lk K LK, LK _ D (62)
1 "=Y, "= =Y, "=V m7km_11Nm7 [l
Vit kn = iai yik1+1,k2+1 ..... km’vk1+1,k2+1 ..... 0 :¢1mk1+1,k2+1 ..... 0 E
yltlothekn (0 5ty )= 0o (Xt L0 X <1 (I =2, n)%
ayk1+1,k2+1 ..... Kyt e . 0
1 0 |17X21---1tk+1)""73/1kl 1 e 1('17X27"'1tk+1): B
% i (6.3)
m +1,Kky +1,..., Ky, +
=_Zoa'ylk1 Mtk 1(Ei7X21"'!tk+l)+¢31(X27"'!tk+1)’ B
Osxisli,(i=L_n,i¢1),ki=0,Ni -1, 5
y;lﬂ'kzﬂ """ km+1(X1707X37---7tk+1):‘pzzklﬂ’kfl """ km+1(X1707X37---7tk+1)’ E
y;lﬂ'kzﬂ """ km+1(X11|21X31---1tk+1):¢32k1+1’k2+1 """ km+1(X17|27X37---7tk+1)[
o<x <l,li=Lni#2) k =0N, -1, E
........................... (6.4)

y:1+1,k2+1 ..... km+1(xlw_’xn_l’0’tk+l) — ¢2nk1+1,k2+1 ..... km+1(xl’___,xn_1’0’tk+l)’
Yo g L Xt ) = Bt X000, b)
0sx <k (=Lni#n k=0N-1

:{tk‘ 't =kt ki = O!—Ni! N;T; :Ti}! ey = (tk1+1!"'!tkm+1)1

y'k1+1’k2+1 ..... ot = Yi (Xltk+]_)1 [ :ﬁ; k ZO,_N, fiklﬂ'kzﬂ """ km*1 = fi (thk+1)1 [ ::Ln, ki :01 Ni ;

MO Ooo

where w

T

yp e o Y i=1n); ¢y, (=2m). ¢,. (i=1n) andg,,

T

(i = 171) are given functions. The following theorem takes place:
Theorem 6.1. If in non-local condition (1.4) one of the two following conditions are satisfied: a)
I m X m |- I
a, =20 (I =0, m), zﬂsl or b) a,<0, zusl(i =0, m), then (6.7)-(6.10) algorithm of
i=0 i=0
parallel count is stable with respect to initial conditions and right hand function and converges
to the exact solution of the nitial problem with speed of Or"?2).



