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Abstract  Geometric algebra has been proved to be a powerful mathematical lan-
guage for robot vision. We give an overview of some research results
in two different areas of robot vision. These are signal theory in the
multidimensional case and knowledge based neural computing. In both
areas a considerable extension of the modeling has been achieved by
applying geometric algebra.
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1. Introduction

In this tutorial paper we present a survey of some results contributed
by the Kiel Cognitive Systems Group to the applications of geometric
algebra in robot vision. Geometric algebra makes available a tremen-
dous extension of modeling capabilities in comparison to the classical
framework of vector algebra. It is our experience that application of
geometric algebra should be strictly controlled by the geometric nature
of the problem being considered. To demonstrate that tight relation
between the problem at hand, its algebraic formulation and the way to
find solutions will be our principle matter of concern. We i will do that
by considering some key problems in robot vision. More details of the
results reported here can be found in the papers and reports of the Kiel
Cognitive Systems Group at our website (http://www.ks.informatik.uni-
kiel.de). In addition, an extended version of this paper will be available
[Sommer, 2003].
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1.1 Robot Vision

Robot vision is a demanding engineering discipline emerging from
several contributing scientific disciplines. It aims at designing mobile
technical systems which are able to take actions in its environment by
using visual sensory information.

Although a matter of research for three decades, we are far away
from having available seeing robots which are able to act comparable
to humans in real world conditions. There are several reasons. First,
many different disciplines such as image processing and signal theory,
pattern recognition including learning theory, robotics, computer vision,
and computing science are required for robot vision. Each of these have
their own problems caused by limited modeling capabilities. Second,
each of them has been developed to a great extent, isolated from the
other ones, by using quite different mathematical languages of model-
ing. Thus, the fusion of all these disciplines within one framework is
demanding by itself. Third, the most difficult problem is the design of
the cognitive architecture. This concerns e.g. the gathering and use
of world knowledge, controlling the interplay of perception and action,
the representation of equivalence classes, invariants, and conceptions.
Besides, such a system has to cope with hard real-time conditions.

The design of perception-action cycles cooperating and competing for
solving a task is a demanding challenge. Of special interest is to enable
the system to learn the required competence [Pauli, 2001] from experi-
ence. From a mathematical point of view the equivalence of visual and
motor categories is remarkable. Both are mutually supporting [Sommer,
1997]. Of practical importance are the following two projections of a
perception-action cycle. “Vision for action” means to control actions
by vision and “action for vision” means the control of gaze for making
vision easier.

1.2 Motivations of Geometric Algebra

Representing geometry in a general sense is a key problem of system
design. But only those geometric aspects have to be represented which
are of pragmatic importance. This opportunistic minimalism is tightly
related to the so-called stratification of space as introduced into com-
puter vision by Faugeras [Faugeras, 1995]. The system should be able to
purposively switch from, e.g., metric to projective or kinematic aspects.
We come back to that point in section 4 of [Sommer, 2003].

Another interesting topic is to ensure pragmatic completeness of the
representations. But signal theory which supports image processing op-
erations fails in that respect [Sommer, 1992, Zetzsche and Barth, 1990].
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Local operations have to represent intrinsically multi-dimensional struc-
ture. The search of solutions for that problem was our original motiva-
tion for considering geometric algebra as a modeling language. We will
survey our efforts in striving for a linear theory of intrinsically multi-
dimensional signals in section 2.

Our aim of representing geometry in a general sense means thinking
in a Kleinian sense, thus taking advantage of the tight relationship be-
tween geometry and algebra. All we have done in our work so far is
based on choosing a useful geometry by embedding the problem into a
certain geometric algebra. This is in fact a knowledge based approach to
system design. In section 3 we will demonstrate this way of modeling in
the context of neural computing. There we will profit from the chosen
embedding because it results in a transformation of a non-linear problem
to a linear one.

The problem of converting non-linear problems in Euclidean vector

space to linear ones by embedding into a certain geometric algebra is
related to another basic phenomenon which makes geometric algebra so
useful in robot vision and beyond. From a geometrical point of view
points are the basic geometric entities of a Euclidean vector space. In-
stead, a cognitive system is operating on geometric objects as a whole
unique entity, e.g. a tea pot. An algebraic framework is wanted in which
any object concept and transformations of it may be represented in a
linear manner. Regrettably, this is an illusion. But geometric algebra
enables the extension from point concepts to rather complex ones. In
[Sommer, 2003] we demonstrate their linear construction and how to
model their motion in a linear manner.
We will abstain from presenting a bird’s eye view of geometric algebra in
this contribution. Instead, we recommend the following introduction to
geometric algebra [Hestenes et al., 2001]. In this paper we will use sev-
eral geometric algebras as well as linear vector algebra. We will mostly
write the product in the chosen algebra simply by juxtaposition of its
factors. In some cases we will use a special notation for the chosen ge-
ometric product to emphasize its difference to a scalar product. Special
products will be noted specially. We will use the notation R, ,, for the
geometric algebra derived from the vector space RP9" with p+q+7r = n.
These indices mark the signature of the vector space. Hence, (p,q,)
means we have p/q/r basis vectors which square to +1/—1/0. If possi-
ble we reduce the set of signature indices, as in the case of the Euclidean
vector space R™.
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2. Local Analysis of Multi-dimensional Signals

Image analysis is a fundamental part of robot vision. We do not
understand image analysis as interpreting the whole visual data with
respect to the complete scene or recognizing certain objects mapped
to an image. This in fact is subject of computer vision. Instead, the
aim of image analysis is to derive features from visual data for further
processing and analysis. Its theoretical basis in called signal theory.

In (linear) signal theory we find the framework for handling linear
shift invariant operators (LSI operators) and spectral representations of
both signals and operators which are computed by Fourier transform.
Both are tightly related. Although both are widely used in image anal-
ysis, there is a serious problem with respect of supporting recognition of
intrinsically multi-dimensional and especially two-dimensional structure.
This is a problem of incomplete representation.

We have to distinguish between two different conceptions of dimen-
sionality of image data. The first one is the embedding dimension of data
which is two in case of images and three in case of image sequences. The
other one is the intrinsic dimension of local image structures. It expresses
the number of degrees of freedom necessary to describe local structure.
There exists structure of intrinsic dimensions zero (i0D) which is a con-
stant signal, one (i1D) which are lines and edges and two (i2D) which
are all the other possible patterns. As the meaning of “local” is depend-
ing on the considered scale, the intrinsic dimension at a chosen image
position is scale-dependent too.

In this section we will show that by embedding image analysis into
geometric algebra the mentioned representation gap hopefully will be
closed.

2.1 Local Spectral Representations

Image analysis in robot vision means to derive locally structural hints
by filtering. From the filter outputs certain useful features can be com-
puted. A well known but naive way of filtering is template matching.
Template matching filters are detectors for image structure. Because
there is no way of designing templates for each possible structure, this
method will get stuck soon if i2D patterns are of interest [Rohr, 1992].
Locally the only i1D patterns are lines, edges and textures constructed
from these.

What filter would enable local image analysis if it is no template of
the pattern in search? The alternative is to use a set of generic features
as basis functions of patterns than the patterns themselves. We call this
approach the split of identity.
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There are many different approaches for computing the split of iden-
tity, including multi-scale analysis, local principal component analysis
and variants of local Taylor series development. All of these take into
consideration only the magnitude of the filters in the Fourier domain.

Our preferred approach in the split of identity is to instead use quadra-
ture filters h, [Granlund and Knutsson, 1995],

hq — he +jh07 (1)

that is complex valued filters, where {h¢, h,} is a pair of real filters
with even and odd symmetry, respectively. An example is the widely
used Gabor filter [Granlund and Knutsson, 1995]. This kind of filtering
applies evenness and oddness as a feature basis for image analysis.

Because these filters are in quadrature phase relation, that is, their
phase is shifted by —F, {he,ho} is called a quadrature pair. Then con-
volution of the image f with such a filter h,, a € {e, 0},

ga(®) = (ha * [)(x) (2)

results in outputs g. and g,, respectively, which represent locally the
even and odd symmetry of f. If b, is a bandpass filter, then equation (2)
enables the above mentioned multi-resolution analysis of local symmetry.

We restrict ourselves for the moment to 1D signals because for these
the theory is well established.

Global even and odd symmetry is intrinsic to the Fourier representa-
tion of a real 1D signal. This property is called Hermite symmetry. But
filtering a real function f with a quadrature filter h, results in a complex
valued function

g(w) = ge() + jgo(x) (3)

no longer having Hermite symmetry in the Fourier domain. Instead, the
Fourier transform G(z) has the important property of approximating
the analytic signal F4(u),

Fa(u) = F(u) + 7 Fp (u) = (1 + sign(u)) F(u) (4)

very well within the passband of the quadrature filter Hy(u). The ana-
lytic signal in the Fourier domain is composed of the Fourier transform
of the real signal F'(u) and the Hilbert transformed signal Fy(u),

Fp(u) = Hp(u)F(u) = —jsign(u) F(u). (5)
In the spatial domain the analytic signal is

fa(z) = f(z) +jfu (), (6)
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which is not only a complex function as in equation (4) but also has
the property that f and fg are phase shifted by —75. The functions f
and fy form a Hilbert pair. This is caused by the fact that the Hilbert
transform H; changes even signals to odd ones and vice versa. There
are no amplitude changes because |Hy| = 1 for all frequencies. Hj, being
pure imaginary, causes only phase effects. The operator of the Hilbert
transform in the spatial domain reads

hi(z) = - (7)

The importance of the analytic signal results from computing the local
energy e(z) and the local phase ¢(x),

e(x) = f*(x) + fii(2), (8a)

¢(z) = arg fa(x). (8b)

Their use in local signal analysis decomposes the split of identity into
quantitative and qualitative subtasks. If there exists a threshold e of
significance, then e(x) > ¢ indicates a certain local variance of data. In
that case it is interesting to ask for the quality of the local structure.
This is given by the local phase in the following way. An edge (odd
symmetry) is indicated by ¢(x) = £% and a line (even symmetry) is
indicated by ¢(z) = 0 or ¢(z) = m. The same ideas can be used to
interpret the output of a quadrature filter g(x), given in equation (3).

Regrettably, this method of symmetry related split of identity which
we outlined so far is not easy extendable to 2D functions, although it
is used in image analysis for edge and line detection. In 2D signals
it is limited to intrinsically one-dimensional functions. Hence, the aim
is twofold: extension in a consistent manner to a 2D embedding and
extension to intrinsically two-dimensional signals. We will present our
first trials in the next subsection. These results are based on the PhD
thesis of Biilow [Biilow, 1999].

2.2 Quaternionic Embedding of Line Symmetry

In this section we will first show that the algebraic nature of the
Fourier transform in the complex domain causes a limited representation
of symmetries for 2D functions. We propose embedding the Fourier
transform into an algebraic domain with more degrees of freedom. Then
we will use this idea to generalize the concept of the analytic signal for
embedding dimension two to cover also the case of i2D signals.



A Geometric Algebra Approach to Some Problems of Robot Vision 7

2.2.1 Quaternionic Fourier Transform. We use the well-
known technique of decomposing a 1D function f(z) for any location x
into an even part, fe(z), and an odd part, f,(z), according to f(x) =
fe(z) + fo(x)r. Because the Fourier transform is a linear integral trans-
form it maps this decomposition in an integral manner into the frequency
domain. Let F(u) be the complex valued Fourier transform, F°(u) € C,
of a one-dimensional real function f(z). Then

F(u) = Fr(u) + jF1(u) = Fe(u) + Fo(u) (9)

as a result of all possible local decompositions f(x) = fe(x) + fo(z).
Thus, the complex Fourier transform makes explicit the only symmetry
concept of a 1D function. In case of 2D functions f(x), * = (z,y), the
complex Fourier transform

F(u) = Fr(u) + jFr(u) , w = (u,v) (10)

can also represent only two symmetry concepts. This contradicts the fact
that in principle in two dimensions the number of different symmetries
is infinite.

The 2D harmonic function

Q°(u, x) = exp(—j2mu-x) (11)

is the basis function of the 2D Fourier transform on a unit area
() = [[ (@) Q*(u.) da. (12)

The 1D structure of Q°(u, ) is the reason that in the complex Fourier
domain there is no access to 2D symmetries. Looking at the decompo-
sition

Q°(u, ) = Q°(u, x) Q°(v,y) = exp(—j2muzx) exp(—j2mvy),  (13)

it is obvious that the basis functions represent a symmetry decomposi-
tion according to

F(u) = Fee(u) + Foo(u) + Foe(u) + Feo(u) (14)
and, thus, support in the spatial domain a decomposition
f(:li) = fee(m) + foo(x) + foe(m) + feo(x)- (15)

That is, the algebraic nature of equation (13) corresponds to considering
products of symmetries with respect to the coordinate axes. We call
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this line symmetry. But the limited degrees of freedom in the algebraic
structure of complex numbers results in a partial cover of symmetry with

Fr(u) = Fee(u) 4+ Foo(u), Fr(u) = Feo(u) + Foe(u). (16)

Hence, although all symmetries according to equation (14) are contained
in the global spectral representation of the complex Fourier transform,
these are hidden because of equation (16) and cannot be made explicit.
Obviously this is a consequence of the complex algebra which causes the
equivalence of the basis functions according to (11) and (13), respec-
tively. With respect to local spectral representation this results in the
incompleteness as discussed in subsection 2.1.

In [Zetzsche and Barth, 1990] Zetzsche and Barth argue from a dif-
fential geometry viewpoint that the responses of LSI filters should be
non-linearly combined to represent i2D structures. They developed in
the sequel a non-linear filter approach based on second order Volterra
series [Krieger and Zetzsche, 1996].

Instead, our approach is an algebraic extension of the degrees of free-
dom of a multi-dimensional Fourier transform by embedding the spectral
domain into a domain of Clifford numbers. In the case of embedding
a signal of dimension N in the spatial domain, the dimension of the
algebra has to be 2V [Biilow and Sommer, 2001]. We call this kind
of Fourier transform a Clifford Fourier transform (CFT). The Clifford
Fourier transform has been modeled already by Brackx et al. in 1982
[Brackx et al., 1982].

In the case of signal dimension N = 2, the following isomorphisms
exist: Rpo ~ R?:Lo ~ H. Hence, for that case the quaternionic Fourier
transform (QFT), F4(u) € H,

Fitw) = [ [ @wo) (@) Qo) de (1)
with the quaternion valued basis functions
Qi (u,x) = exp(—i2ruz) , Qf(v,y) = exp(—j2mvy) (18)

represents the symmetries of equation (14) totally uncovered in the
quaternionic domain. The algebraic decomposition of F'? is given by

F(u) = F&(u) + iF%(u) + jF(u) + kFL(u). (19)

For real f(x) this corresponds to the symmetry decomposition (same
order as in (19))

Flu) = Fee(u) + Foe(u) + Feo(u) + Foo(u). (20)
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Instead of equation (13), the quaternionic basis functions
Q%(u, x) = exp(—i2mux) exp(—j2mvy) (21)

cannot be fused as in equation (11). Those basis functions which are not
positioned along the coordinate axes are indeed intrinsically 2D struc-
tures and, thus, are able to represent explicitly i2D signals.

The importance of Fourier phase as a carrier of geometric information
is known, as well as the lack of reasonable phase concepts for 2D signals.
The presented QFT overcomes this problem for the first time because of
the representation

Fi(u) = [F¥(u)| exp(i¢(u)) exp(ki)(u)) exp(j6(u)) (22)
of the QFT. Here the triple
T T
@00 € [-mr|[x [-5.5[x [-1.7 ]
of the quaternionic phase represents the 1D phases in axes directions
(¢,0) and the 2D phase (1), respectively.

2.2.2 Quaternionic Analytic Signal.  There are different ap-
proaches, with limited success, to generalizing the analytic signal in
the complex domain for representation of i2D structure. This in effect
means generalization of the Hilbert transform to the multi-dimensional
case [Hahn, 1996]. The quaternionic analytic signal (QAS) presented in
[Biillow and Sommer, 2001] takes advantage of the additional degrees of
freedom in the quaternionic domain. In the spectral domain it is

Ff(u) = (14 sign(u))(1 + sign(v))F?(u) (23)
and in the spatial domain
filx) = f(@) + n' (), (24)

where n = (i,j, k)T is the vector of quaternionic imaginary units and
4, is the vector of the Hilbert transformed signal,

oy) Oa) 1 >T_

) ) 2
T Ty Ty

Fhta) = fle)+ (25)

Regrettably, there is a mismatch of the chosen symmetry concept in
the case of an isotropic pattern. Therefore, in the next subsection we
demonstrate another way of modeling a generalization of the analytic
signal.
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2.3 Monogenic Embedding of Point Symmetry

The drawback of the QAS is the rigid coupling of the considered sym-
metry concept to the coordinate axes of the image signal. In case of
deviations of the patterns from that model, e.g. in case of a rotated
pattern, the quaternionic signal results in wrong local spectral repre-
sentations. The alternative approach of generalizing the analytic signal
which is outlined in this subsection has been developed in the PhD thesis
of Felsberg [Felsberg, 2002].

The aim of this approach is to generalize the analytic signal in a rota-
tion invariant manner. While in [Biilow et al., 2000] the identification of
the isotropic multi-dimensional generalization of the Hilbert transform
with the Riesz transform was presented for the first time, in [Felsberg
and Sommer, 2000] the relation of the corresponding multi-dimensional
generalization of the analytic signal to the monogenic functions of Clif-
ford analysis [Stein and Weiss, 1971] has been published.

As in 2D (complex domain), in 4D (quaternion domain) no rotation
invariant generalization of the Hilbert transform could be formulated.
This is different for embedding a 2D function into a 3D space, or more
generally an nD function into an (n+1)D space. The Riesz transform
then generalizes the Hilbert transform for n > 1. We will give a short
sketch of its derivation in the 2D case in the framework of Clifford anal-
ysis, which is an extension of the complex analysis of 1D functions to
higher dimensions. Furthermore, we will discuss the extension of the
analytic signal to the monogenic signal. The monogenic signal will find
a natural embedding into a new scale space which is derived from the
Poisson kernel. All these results are complete representations of i1D
signals in 2D. We finally will present a first approach of an extension to
i2D signals.

2.3.1 Solutions of the 3D Laplace Equation. = Complex anal-
ysis is mainly concerned with analytic or holomorphic functions. Such
functions can be obtained by computing the holomorphic extension of
a real 1D function. The resulting unique complex function over the
complex plane fulfills the Cauchy-Riemann equations. There exists a
mapping of a holomorphic function to a gradient field which fulfills the
Dirac equation. Such a gradient field of a holomorphic function has zero
divergence and zero curl everywhere and is, thus, the gradient field of a
harmonic potential. The harmonic potential in turn fulfills the Laplace
equation. What is known in signal theory as the Hilbert transform and
analytic signal, respectively, corresponds to the 1D part of the mentioned
holomorphic extension in the complex plane. For a real 2D function the
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corresponding framework is given in Clifford harmonic analysis [Stein
and Weiss, 1971, Brackx et al., 1982].

Let © € R3, = = ze; + yes + zes, be a vector of the blades (R3);
of the Fuclidean geometric algebra R3. Then a R3-valued analysis can
be formulated, see also [Felsberg, 2002], for 3D vector fields g(x),g =
gie1 + goes + gses, which fulfill the 3D Dirac equation,

Vsg(x) = 0. (26)

Here V3 is the 3D nabla operator defined in R3. Then g(x) is called a
monogenic function and is a generalization of a holomorphic one. It can
be shown that there exists a scalar valued function p(x) called harmonic
potential which is related to g(x) by g(x) = V3p(x). Therefore, g(x)
is a gradient field called the harmonic potential field. The harmonic
potential p(x) fulfills the 3D Laplace equation,

Asp(x) = V3V3p(x) =0, (27)

with Ag as the 3D Laplace operator. If g(x) is harmonic, its three
components g;(x) represent a triple of harmonic conjugates. This is
the important property we want to have to generalize a Hilbert pair of
functions, see subsection 2.1.

The fundamental solution of the Laplace equation (27) is given by

1

=— 2
p(@) = g (250)
and its derivative,
T
= — 28b
o) = 5o (25D)

is the harmonic field we started with.

Before having a closer look at the fundamental solution (28) of the
Laplace equation and its derivative, we will relate it to the monogenic
extension f,,(x) of a real 2D function f(z,y) in Rs. The starting point
is a usefull embedding of f(z,y) into R3 as a vector field, respectively
as an ez-valued function,

f(@) = f(zer +ye2) = f(x,y)es. (29)

Note that z = 0. Then the monogenic extension f,,(x) of the real 2D
function f(z,y) can be computed by solving a boundary value problem
in such a way that f,, is monogenic for z > 0 and its eg-component
corresponds to f(x,y) for z = 0.

The boundary value problem reads

Asp(x) =0 for z>0 (30a)
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e;;%p(:c) = f(z,y)es for z=0. (30b)
Solving equation (30a) results in the fundamental solution (28) for z > 0.
But the boundary equation (30b) introduces the contraint gs(x,y,0) =
f(z,y). Thus, the monogenic extension f,, (x) is a specific solution of
(30) which in fact can be computed by convolving the function f(z,y)
with a set of operators derived from the fundamental solution.
The components of g(x) are derivations of p(x)es when z > 0,

0 z
= e e —— 1
he(@) = e _pl@)es = 5 (312)
0 T
hopy(x) =€ 9 (x)es = Y e (31c)
CPy = 26yp 3= 2|3 23-

These functions are well-known in Clifford analysis as the Poisson kernel
(31a) and the conjugate Poisson kernels (31b and 31c), respectively.
While hp = g - es, the expressions (31b) and (31c) can be summarized
by hcp = hepz + hopy = g A es,

(re1 + yez)es

h = 32

orla) = LA (32)
Their Fourier transforms are

Hp(u,v,z) = exp(—2w|ue; + ves|z) (33a)

Hep(u,v,z) = Hg(u,v) exp(—27|ue; + ves|z), (33b)

where

Hp(u,v) = — ( (34)

ues; —vegs _ueip +vey . 4
lue; +ves| ) |uey +ves| 2

is the Riesz transform, which is the generalization of the Hilbert trans-
form with respect to dimension. Note that in equation (34) M* = MI5"!
means the dual of the multivector M with respect to the pseudoscalar
I; of R3. Equations (31) formulate three harmonic conjugate functions
which form a Riesz triple of operators in the half-space z > 0. Obvi-
ously the Riesz transform does not depend on the augmented coordinate
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z. But equations (33) can be interpreted in such a way that z is a damp-
ing parameter in the frequency domain for all components of the Riesz
triple. In fact, z must be interpreted as a scale parameter of a linear
scale-space, called Poisson scale-space.

Here we must make a remark with respect to the Fourier transform
used in this approach. Although the signal embedding is given in a 3D
space, the Fourier transform is 2D. Actually we are using an isotropic
transform to correspond to the model of point symmetry. Hence, for a
given function f(x) the complex valued isotropic Fourier transform is

F(u,v) = //f(:z:) exp(—I32mu - ) dzdy. (35)

Thus, the harmonics we consider are actually spherical ones. This impor-
tant feature, together with the conception of point symmetry to realize
the signal decomposition into even and odd components, overcomes the
restrictions of the QFT of missing rotation invariance.

In the following we will focus on the result of the fundamental solution
of the Laplace equation for z = 0. Besides, we will consider the scale
as parameter of the representation, hence, * = (z,y), and s is the scale
parameter.

2.3.2 The Monogenic Signal.  Let f,;; be the monogenic signal
[Felsberg and Sommer, 2001] of a real 2D signal f(x,y). In the plane s =
0 the monogenic signal f;, is composed by the es-valued representation
f(x) = f(z,y)es and its Riesz transform, fp(x),

fu(x) = fx)+ fr@). (36)
The monogenic signal in the frequency domain, u = (u,v),
Fu(u) = F(u) + Fr(u), (37)
is computed by
Fy(u)=(1+ Hpg(u)) F(u) = <1 + ’Z—‘I21> F(u). (38)

In the spatial domain the Riesz transform results from convolving f with
the Riesz transform kernel hpg,

xre
hp(z) = ———

27|x|3’

x €3 / /i
// 27r]:c’\3f ') dd'dy'. (40)

(39)

thus,
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The Riesz transform generalizes all known Hilbert transform properties
to 2D. In addition, the monogenic signal can be used to compute local
spectral representations. Now the local magnitude is isotropic.

The local spectral decomposition of the monogenic signal in R?,

Fu(@) = [f ()| explarg(frr(w)es)) (41)
is given by the real local amplitude
|far(@)| = exp(log(| £ ar(2)]) = exp((log(frr(x)es))o) (42)
and the local rotation vector
r(z) = arg(fy(2))" = (log(fy(w)es))s, (43)

see [Felsberg, 2002]. The local rotation vector r(x) lies in the plane
spanned by e; and es. Hence, it is orthogonal to the local amplitude
vector | f;(x)|es. In the rotation plane the rotation vector is orthogonal
to the plane spanned by f,; and e3. The length of the rotation vector
is coding the angle ¢ between f,; and e3 which is the local phase of the
2D signal,

p(@) = sign(r - e1)r]. (44)

The orientation of the plane spanned by f,; and e3 expresses the local
orientation of the 2D signal in the image plane, 0(x).

Local phase and local orientation are orthogonal features expressing
structural and geometric information in addition to the energy informa-
tion represented by the local amplitude.

Hence, from the chosen 3D embedding of a 2D signal we obtain a more
complex phase representation than in the 1D case. It includes both the
local phase and the local orientation of a structure. But it is limited
to the case of i1D-2D structures. Nevertheless, the result is a consis-
tent signal theory for representing lines and edges in images which tells
apart the difference between the embedding dimension and the intrinsic
dimension of a signal. A practical consequence is that steering of the
orientation in that approach is unnecessary for i1D signals.

The phase decomposition of a monogenic signal expresses symmetries
of a local i1D structure embedded in R3. There is an interpretation
of the local phase other than that given by a rotation vector of a R:}f—
valued signal f,;es as in equation (43). Instead, the decomposition
into local phase and orientation can be understood as specification of
a rotation in a complex plane which is oriented in R3. In that case,
for a given orientation 6, the well-known phase interpretation of a 1D
signal (equation (8b) can be used. The embedding into Rs supplies the
orientation of the complex plane.
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2.3.3 The Poisson Scale-Space. So far we have discussed the
derivation of local spectral representations, including local orientation,
from the monogenic signal for the case of vanishing damping by the
Poisson kernel (31a) and conjugate Poisson kernels (32), respectively.
The same interpretation applies of course for all other scale parameters
5> 0.

Because the Poisson kernel can also be derived for 1D signals by solv-
ing the Laplace equation in R, there exists a similar scheme for that
case [Felsberg, 2002].

The fact that {x;s} with s being the Poisson scale parameter rep-
resents a linear scale-space [Felsberg, 2002| is surprising at first glance.
There exist several axiomatics which define a set of features a scale-
space should have. The first important axiomatic of scale-space theory
proposed by lijima [lijima, 1959] excludes the existence of other scale-
spaces than that one derived from solving the heat equation, that is the
Gaussian scale-space. In [Felsberg and Sommer, 2003] the reason for
that wrong conclusion could be identified.

As set out in subsection 2.1 the allpass characteristics of the Hilbert
transform and also of the Riesz transform hinders their application in
image analysis. Instead, there is a need for quadrature filters which
are in fact bandpasses. By using the Poisson kernel and its conjugate
counterparts (equations (33)), it is possible to design bandpasses by
building the difference of Poisson filters [Felsberg, 2002]. These are ab-
breviated as DOP filters and DOCP filters, respectively. In order to
match symmetry they are either even (DOP) or odd (DOCPs). As
hp,hcps and hcpy these three bandpasses also form a Riesz triple.
The set of filters is called a spherical quadrature filter. Interestingly,
DOCP = DOCP, + DOCP, is an odd and isotropic operator which
could not be designed in another way.

The Poisson scale-space is not only new, but its conception estab-
lishes a unique framework for performing phase-based image processing
in scale-space. Hence, local phase and local amplitude become inher-
ent features of a scale-space theory, in contrast to Gaussian scale-space
[Felsberg and Sommer, 2003]. In [Felsberg and Sommer, 2003] there is
a first study of the properties of the monogenic scale-space.

2.3.4 The Structure Multivector.  The monogenic signal only
copes with symmetries of i1D structure in a rotation invariant manner
and enables one to estimate the orientation in addition to phase and
amplitude. How can this approach based on solving the Laplace equation
be extended to i2D structure? In a general sense the answer is open yet.
This results from the fact that in 2D there exist infinitely many different
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symmetries. Because the monogenic signal is derived from first order
harmonics as a transfer function of the Riesz transform, it follows that
an increase of the order of harmonics to infinity would be necessary to
cope with an arbitrary i2D structure. Hence, from this point of view
we get stuck in a complexity problem similar to other knowledge-based
approaches of designing pattern templates as filters.

Nevertheless, a first shot is given by the approach of the structure
multivector [Felsberg and Sommer, 2002]. Here the first spherical har-
monics of order zero to three are used to design a set of filters. This set
implicitely assumes a model of two perpendicularly crossing i1D struc-
tures, thus representing in our approach a simple template of a special
i2D structure [Felsberg, 2002].

Let hg be the impulse response of a spherical harmonic filter of order
i. Then hl(z) = §(z) and hi(x) = hgr(z). If f(x) € R, then

S(x) = f(z) + (hg * f)(x) + e3(h = f)(@) + es(hl * f) (@) (45)
is a mapping of the local structure to a 7-dimensional multivector,
S(x) = so + s1€1 + s2€2 + sze3 + sazez3 + s31€31 + s12€12,  (46)

called the structure multivector.

That response actually represents a special 12D generalization of the
analytic signal. Hence, a split of identity of any i2D signal, projected to
the model, can be realized in scale-space. The five independent features
are local (main) orientation, two local i1D amplitudes and two local i1D
phases. A major amplitude and a minor amplitude and their respective
phases are distinguished. The occurrence of a minor amplitude indicates
the 12D nature of the local pattern. For details the reader is referred to
[Felsberg, 2002, Felsberg and Sommer, 2002].

The filter can be used to recognize both i1D and i2D structures, but in
contrast to other filters which respond either to i1D or to i2D structure
or mix the responses in an unspecific manner, this filter is specific to
each type of structure.

3. Knowledge Based Neural Computing

Learning the required competence in perception and action is an es-
sential feature of designing robot vision systems within the perception-
action cycle. Instead of explicitly formulating the solution, implicit rep-
resentation of knowledge is used. This knowledge concerns e.g. equiv-
alence classes of objects to be recognized, actions to be performed or
visuo-motor mappings.

There are plenty of different neural architectures. But most of them
have in common that they are general purpose or universal comput-
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ing architectures. On the other hand we know that some architecture
principles are more useful for a given task than others.

If the designer is aware of the specific features of his problem, he
may integrate domain/task knowledge into the very architecture of neu-
ral computing. We will call this knowledge based neural computing
(KBNC).

We will focus here on algebraic approaches which are tightly related
to the geometry of data. Our choice is to take geometric algebra as
an embedding framework of neural computing. We developed a general
scheme of embedding neural computing into Clifford algebras in the sense
of a knowledge based approach [Buchholz and Sommer, 2000b, Buchholz
and Sommer, 2001b, Buchholz and Sommer, 2001a]. As an outcome
we could propose several special neural processing schemes based on
using geometric algebra [Banarer et al., 2003b, Buchholz and Sommer,
2000a, Buchholz and Sommer, 2000c|. In our approach we are capturing
higher order information of the data within a single neuron by exploiting
the special multivector structure of a chosen algebra. Because we get
access to the chosen Clifford group, we are thus able to learn geometric
transformation groups for the first time.

Neural learning of a model can be understood as an iterative non-
linear regression of a function to a set of training samples. By embed-
ding the fitting of a model to given data into geometric algebra, we use
algebraic knowledge on the nature of the problem to constrain the fit by
the chosen algebraic rules. Furthermore, the chosen embedding causes
a transformation of the function from a non-linear type in Euclidean
space to a linear one in the special Clifford domain. This is a principle
of minimal efforts which is called Occam’s razor in statistical learning
theory. Thus, learning the linear function in geometric algebra will be
simpler than learning the non-linear one in vector algebra.

3.1 The Clifford Spinor Neuron

3.1.1 The Generic Neuron. In this section we will restrict
ourselves to the algebraic embedding of neurons of perceptron type ar-
ranged in feed-forward nets. Next we will summarize the basic ideas of
computing with such neurons.

Let us start with a so-called generic neuron whose output, y, reads
for a given input vector & and weight vector w, both of dimension n, as

y = g(f(z;w)). (47)

The given neuron is defined by a propagation function f: D" — D and
by an activation function g: D — D’. In case of a real neuron with
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D =R and w,x € R", the propagation function
n
fl@)=> wir; +90, (48)
i=1

where 6 € R is a threshold, obviously computes the scalar product of
w and x. Because of the linear association of weight and input vectors,
(48) is also called a linear associator. A neuron of that type with g being
the identity operation is also called an adaline. By applying a non-linear
activation function g to f, the neuron will become a non-linear comput-
ing unit called a perceptron. While an adaline may be interpreted as
iteratively realizing a linear regression by learning, a trained perceptron
enables the linear separation of two classes of samples. This classifica-
tion performance results from the fact that the trained weight vector is
perpendicular to a hyperplane in input space.

For the training of the generic neuron a supervised scheme can be
used. That is, there is a teacher who knows the required answer, r* € R,
of the neuron to a given input ' € R™. Hence, the training set is
constituted by m pairs (x,7). Then the aim of learning is to find that
weight vector w which minimizes the sum of squared error (SSE)

m

B= 30 -y (49)

i=1

This optimization is done by gradient descent because the weight cor-
rection at each step of the iterative procedure is given by

OF
Aw; = _”a—wj’ (50)

where 77 > 0 is a suitable learning rate.

Because in a net of neurons the error has to be propagated back from
the output to each neuron, this is also called back-propagation.

Finally, we will give a short sketch of combining several neurons to a
(feed-forward) neural net. By arranging p (real) neurons in a single layer
that is fully connected to the input vector x, we will get a single layer
perceptron network (SLP). If g is a non-linear function, the output vector
y represents in each of its p components y; a linear discriminent function
in input space. By taking at least one of such layers of neurons and
hiding it under an output layer, we will get a hierarchical architecture
of neurons, which is called multilayer perceptron (MLP) architecture.
The output layer is composed of at least one neuron which computes the
superposition of the neurons of the preceding layer according to equation
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(47). Hence, the MLP may be used either as a non-linear classification
unit or for approximating any non-linear function.

If, on the other hand, g is the identity, the SLP computes an ordinary
matrix multiplication,

y=We, (51)

where W is the weight matrix containing the single weight vectors. If
W is square (x,y € R"), then it represents a linear transformation of
the input vector.

3.1.2 The Clifford Neuron. Now we will extend the model of
a real valued generic neuron to that of a Clifford valued one. We will
neglect for the moment the activation function. By replacing the scalar
product of the linear associator by the geometric product of an algebra
Rp.4, P+ q=n, we are embedding the neuron into R, , according to

fiRpg — Rpg (52)
Hence, for =, w,© € R, , the propagation function is
flx) =wx+06 (53a)
or
f(x) = zw + 0O, (53b)

respectively. Note that the geometric product with respect to R, ,
now has to be computed. The splitting of the propagation function
into the two variants of equation (53) follows obviously from the non-
commutativity we have to assume for the geometric product of Ry, ,.

Having a training set 7: = {(z!,71), ..., (™, r™)|z’,r' € R, }, the
weight corrections

Aw =T (r' — wz') (54a)
for left-sided weight multiplication and
Aw = (r' — x'w)E (54b)

for right-sided weight multiplication enable a Clifford neuron to learn in
a similar manner as a real one. Here @ means the conjugate of x in the
Clifford algebra. By taking this involution, the appearance of divisors
of zero during the gradient descent is prevented [Buchholz and Sommer,
2001b, Buchholz and Sommer, 2001a).
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What is the benefit derived from computing (53) instead of (48)?7 We
give an illustrative example. Let @ = x1 + 29 and y = y; + ty2 be
two fixed complex numbers, x,y € C with C ~ Ry ; ~ R;O. The task
of a complex neuron shall be learning the mapping f: x N y. This
corresponds to learning a weight w € C so that wa = y, that is to learn
a complex multiplication. This is in fact a simple task for the complex
neuron. If instead real neurons should do the same, there is a need of
a SLP with two neurons to compute y; and ys, respectively. According
to (51) the task is now to learn a weight matrix W € R(2), which
satisfies W (x1,29)" = (y1,2)7 with &,y € R2 Here W represents
a linear transformation of the vector . The SLP has to find out the
constraints on W which correspond to the matrix representation of a
complex number. These constraints are obviously w1 = wes and wis =
—wsg1. As shown in [Buchholz and Sommer, 2001b] the SLP converges
slower than the complex neuron. It is obviously better to use a model
than to perform its simulation. Another advantage is that the complex
neuron has half of the parameters (weights) to learn in comparison to
the SLP.

Both of these observations can be generalized to any Clifford neuron in
comparison to a corresponding SLP. Because of the R-linearity of Clifford
algebras [Porteous, 1995|, any geometric product can be expressed as
a special matrix multiplication. Hence, by choosing a certain Clifford
algebra it is not only that a decision is made to use an algebraic model,
but statistical learning will become a simpler task.

3.1.3 The Clifford Spinor Neuron. There are additional ad-
vantages to using this approach. Next we want to extend our model.
The above toy example gives us a hint. The SLP has to find out that
W is indeed representing an orthogonal transformation. Because each
special orthogonal matrix W € R(2) is a rotation matrix, W rotates x
to y in R2. Therefore, in the case of the complex neuron the equation
wx = y can be interpreted as mapping x to y, x,y € C, by the complex
number w. But now w is no longer a point in the complex plane but
the geometric product of w represents a special linear transformation,
namely a rotation-dilation, see [Hestenes, 1993]. The representation of
such an orthogonal operator in geometric algebra is given by the sum of
a scalar and bivector components and is called a spinor, S. In general,
a spinor performs a dilation-rotation in the even subalgebra R;; q of any
geometric algebra R, ;.

Hence, the complex neuron learns a spinor operation, which is per-
forming an orthogonal transformation in C. But this is no longer true
for our simple model of the Clifford neuron introduced in equation (53) if
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we choose vectors ,y € R3. The spinors of R3 are quaternions because
of the isomorphism R ~ H. To perform a rotation in R3, which maps
vectors to vectors, the two-sided spinor product

olx):x— SzS ™ (55)

has to be used in (53) instead. In this equation, the right half of the
multiplication is performed with the inverse parity conjugated spinor,

S _1. The geometric product is now the quaternion product because of
the isomorphism R?:Lo ~ Rp 2. Instead of the vector & € R3, we have to
use its representatioh as a (pure) quaternion, x € Ry s.

The greatest advantage of embedding a geometric problem into geo-
metric algebra is to profit from such linear realization of group actions.
Another advantage is that the group members, and the set of elements
the group members are acting on, belong to the same algebra.

Because in our context the spinors are representing weights of the
input of a neuron, we will continue using the notation w instead of S.
The propagation function of a general Clifford spinor neuron, embedded

. + .
into vaq, is

flx) = wzw ' + 6. (56)

Such a neuron computes an orthogonal transformation by using only one
weight, w. Only in the case of a spinor product do we get the constraints
necessary to use only one neuron with one weight for computing an or-
thogonal transformation. Obviously, the general Clifford spinor neuron
has only half as many parameters (and half as many arithmetic opera-
tions) as the general Clifford neuron because only the even components
of the weight multivector are used. But special care has to be taken to
use the right coding of input and output data [Buchholz and Sommer,
2001b].

Now we will complete the neuron model by considering the activation
function g, see equation (47). There is a need for generalizing an activa-
tion function on the real domain to the most popular sigmoid function

g8(u) : R — Ry u — (1+ exp (—fu))”" (57)

on a Clifford valued domain. So far there is no easy way to formulate
such a generalization [Georgiou and Koutsougeras, 1992]. Therefore, we
use a component-wise activation function

g(u) = g([ul:),  i€{0,..,2"7"} (58)

which is operating separately on all 2",n = p + ¢, components of R, ,.
This was first proposed by Arena et al. [Arena et al., 1997] for the
quaternionic case.
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The construction of a Clifford MLP (CMLP) or of a Clifford Spinor
MLP (CSMLP) by following the principles of a real MLP is straightfor-
ward. To formulate a generalized backpropagation algorithm [Buchholz
and Sommer, 2001a] is not a problem.

In principle real MLPs, CMLPs and CSMLPs have the same theo-
retical strength because all are universal approximators. Because they
also use the same activation function, any potential advantage with re-
spect to generalization of using the embedding of neural computation
into geometric algebra should be based on the geometric product of the
propagation function.

3.14 Learning a Euclidean 2D Similarity Transformation.

The task is to learn the plane Euclidean similarity transformation
composed by a 2D rotation with ¢ = —55° a translation with ¢ =
(4+1,—-0.8) and a dilation by the factor § = 1.5 [Buchholz and Sommer,
2001b].

Figure 1 shows both the training data (a) and test data (b), respec-
tively. We applied a SLP with two real neurons and four weights, one
complex neuron and one complex spinor neuron. While the complex
neuron has two weights, the spinor neuron has only one. Figure 1lc
shows the convergence of the three computing units during training. As
we see, the complex neuron converges faster than the real neurons. The
reason for that behaviour has been discussed above. The spinor neuron
needs more training steps for learning the constraints of the spinor prod-
uct. But after 60 epochs its error is the lowest one of all three models.
The spinor neuron learns a spinor representation, which is indicated by
the successive convergence of the odd components of the propagation
function to zero.

Generalization with respect to learning of a function means keeping
the approximation error low if the data have not been seen during train-
ing. The behaviour of the neurons applied to the test data should be
comparable to that for the training data. In the case of a KBNC ap-
proach, the learning of the model should also be robust with respect
to distortions of the model in the data caused by noise. We overlayed
both the training and test input data with additive median-free uniform
noise up to a level of 20 percent. The mean square errors of the out-
puts are shown in figures 1d and le. Both the Clifford neuron and the
Clifford spinor neuron are slightly distorted in learning the model. But
their results with respect to the test data in comparison to training data
indicate a good generalization. There is no significant difference in the
behaviour of both Clifford neuron models with respect to generalization.
This is what we expect in the case of complex algebra. The result for



A Geometric Algebra Approach to Some Problems of Robot Vision 23

—o— Input —o—  Input
08l -+ - Output 08 —+ - Output] |
06 06
04r 04
0.2F 02
of 0
A /+ Tk
_o2f H o N -02 7 ’ N
—0ab SUISIRLIUNE Sy —0.4 /,/ s
/ [
-06[ . -06 v i 4
S
-
-0.8F -08
-l\ -08 -06 -04 -02 o 02 0.4 0.6 08 1 _11 -08 -06 -04 -02 o 02 04 06 0.8 1
c‘omplex p—
spinor -
real -
100 120 140
0.005 T T T 0.005
0.0045 real —— 1 0.0045 real ——
complex - complex -
0.004 - spinor 4 0.004 - spinor
0.0035 - 4 0.0035 -
0.003 - 4 0.003 -
% 0.0025 % 0.0025
= =
0.002 - 9 0.002 -
0.0015 - - 0.0015 -
0.001 0.001
0.0005 - 0.0005 -
0 0 hmmmmmm
0 5 10 15 20 0 5 10 15 20
Noise level (%) Noise level (%)

Figure 1.  Learning of a plane Euclidean similarity transformation. Upper row: left
(a): training data; right (b): test data; middle (c): convergence of the learning; lower
row: approximation error; left (d): training errors; right (e): test errors.

the Clifford neurons contrasts with the performance of the real neurons.
These are much less distorted during training but much more in the case
of test data in comparison to the knowledge based neurons.

Because real neurons are learning a general linear transformation, they
are able to learn noise better than the Clifford neurons. This causes
both the lower errors for training data and the higher ones for test data.
Because the real neurons have no constraints to separate the intrinsic
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properties of the Euclidean transformation from those of the noise, they
learn a transformation which only barely copes with new data. This
indicates a bad generalization.

Both models of the Clifford neuron are constrained by the involved
algebra to separate the properties of the geometric transformation from
those of the noise. They are hindered to learn noise. Therefore, their
results are worse than those of the real neurons in the case of training
data but better in the case of test data.

3.2 The Hypersphere Neuron

Here we will present a special neural architecture which is based on
the conformal geometric algebra. This algebra creates a non-Euclidean
model of Euclidean geometry with the remarkable property of metrical
equivalence [Dress and Havel, 1993]. This embedding of a Euclidean
vector space results in a hypersphere decision boundary which, in the
used embedding space, is a hyperplane and thus can be learned by a
perceptron-like neuron.

3.2.1 The Homogeneous Model of the Euclidean Space.
It has been proposed by Hestenes in [Hestenes, 1991] that the conformal
group C(p,q) of RPY can be elegantly constructed in Rpiq 441 in the
framework of geometric algebra by applying the outer product, A, with a
unit two-blade, E:= eAey = e, Ae_. This operation is called conformal
split. It transforms the conformal group into a representation which is
isomorphic to the orthogonal group O(p + 1,¢ + 1) of RPFLI+L In [Li
et al., 2001] Li et al. worked out in detail the method of representing
the conformal geometry of the Euclidean space R™ in Minkowski space
R L1 respectively in the conformal geometric algebra Rpt11-

The construction R**11 = R” @ RL1, @ being the direct sum, uses
a plane with Minkowski signature whose basis (e4,e_) with e =1,
e? = —1 augments the Euclidean space R" to realize a homogeneous
stereographic projection of all points & € R™ to points € R"t11 see
[Rosenhahn and Sommer, 2002]. By replacing the basis (e, e_) with
the basis (e, eg) in the Minkowski plane, the homogeneous stereographic
representation will become a representation as a space of null vectors.
This is caused by the properties of the new basis vectors. These are
related to the former ones by e = e_ + e and eg = 3(e_ — e;) with
e?=e3=0ande-ey=—1.

Any point € RPY transforms to a point & € RPT1a+1

1
=+ Qach +ep (59)
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with 2 = 0.

Hence, points of the Euclidean space R? are represented by null vec-
tors in the 5-dimensional space R*! with Minkowski signature. Actually,
they are lying on a subspace of R*! called horosphere, N3. The horo-
sphere, which is a cut of the null cone with a hyperplane, see [Li et al.,
2001], with the remarkable property of being a non-Euclidean model of
Euclidean space, has been known for a long time, see [Yaglom, 1988].
But only in geometric algebra is there a practical and relevant approach
to exploit this powerful non-Euclidean representation in engineering ap-
plications. The horosphere N/' is metrically equivalent to a Euclidean
space R™. It is called the homogeneous model of Euclidean space, since
points in R™ are represented in generalized homogeneous coordinates.

3.2.2 Construction and Properties ofthe Hypersphere Neu-
ron. Being metrically equivalent means that there exists a correspon-
dence between the distance d(x,y) in R™ and the distance d(x,y) on
the horosphere N7 of R*"*11 With d(z,y) = |z — y| = \/(x — y)? this
mapping reads d(z, y) = —%dQ(:B, y), see [Dress and Havel, 1993]. Given
two points @,y € R™, their distance d(x,vy) is computed simply by the
scalar product z - y in R"" 51 Hence [Li et al., 2001],

1 2

—5(53 -y)°.

Any point ¢ € N’ can be interpreted as a degenerate hypersphere s
with center at ¢ and radius r» € R equal to zero,

(60)

<

1
s=c+ 5(02 —r%)e + ey. (61)
A point z lies on a hypersphere if | — ¢| = |r|. The general relation

of a point & and a hypersphere s may be described by evaluating their
distance
2 1 2, 15
rre-e=—=(x—c)* 4 =r-. (62)
2 2
Then the distance of a point, represented by the null vector x, to a
hypersphere s € R"*11 will be

| —

dz,s)=z-s=x-c—

> 0 if x is outside s
d(z,s):{=0ifxisons . (63)
< 0if x is inside s

That distance measure is used for designing the propagation function
of a hypersphere neuron [Banarer et al., 2003b]. If the parameters of
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the hypersphere are interpreted as the weights of a perceptron, then by
embedding any data points into R™*1!, the decision boundary of the
perceptron will be a hypersphere. Because a vector & € R*Th! without
an ep—component represents a hypersphere with infinite radius, that is
a hyperplane, the hypersphere neuron subsumes the classical perceptron
as a special case.

The implementation of the hypersphere neuron uses the equivalence
of the scalar products in R**11 and R"*2. If x,y € R**! and z, 5 €
R"2 then -y = ® -y. Therefore, we use the following coding
for a data vector x € R", * = (1,...,2,), embedded in R"*?: & =
(21, .oy Ty, —1, —32?). The coding of the hypersphere s € R""11 repre-
sented in R"*2 is given by § = (c1,..., ¢y, 5(c? — r%),1). As a result of
that embedding, a hypersphere in R" is represented by a hyperplane in
R"™*2. This maps the hypersphere neuron to a perceptron with a second
bias component.

In the above coding, the components of the hypersphere are considered
as independent. This makes the hypersphere unnormalized and enables
one to control the assignment of the data either to the inner or to the
outer class of a 2-class decision problem, see [Banarer et al., 2003b]. This
is of special interest because the effective radius of the hypersphere will
be influenced by the parameter 3 of the sigmoidal activation function,
see equation (57), which is used to complete the neuron. If we remember
the interpretation of points in R**1! as a degenerate hypersphere, we are
able to assign to the data points a confidence measure by extending the
points to hyperspheres with imaginary radius. The confidence attributed
to a data point is

1
LooNr =T + 5(532 +réonr)e + €. (64)

From the scalar product between the hypersphere s and x-onp,

s+ zoonr = 50 — (@ — O +2or), (65)

follows a shift of the effective distance of the point to the hypersphere
during training of the neuron. This leads to an adaption of the classifi-
cation results to the confidence of the data.

3.2.3 The Performance of the Hypersphere Neuron. The
hypersphere neuron is an elemental computing unit of a hypersphere
single-layer perceptron (SLHP) or multi-layer perceptron (MLHP), re-
spectively. Its superior performance in comparison to the classical SLP
or MLP, respectively, can be demonstrated with respect to several bench-
mark data sets [Banarer et al., 2003a].
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Figure 2.  Classification of three toy objects. Visualization of the decision surfaces
and data sets of the three first principal components.

In figure 2 we show an example from real world data. The problem is
to recognize three different toy objects in a rotation invariant manner.
For each of the 360 data sets (images with objects rotated each by 1°)
a principal component analysis (PCA) was performed. Finally, the first
three eigen-images of each class, each transformed to a data vector of
length 1225, have been used for classification. T'wo neurons of a MLHP
have been sufficient to separate the three classes. Obviously, the neuron
model used is adequate for the problem.

Acknowledgments

The reported work is based on several research projects which were
granted by DFG, EC and the German National Merit Foundation. Sev-
eral PhD theses and diploma theses came out of that research. I have to
thank all these young scientists for their enthusiasm in solving the prob-
lems I outlined in very limited space. Special thanks for the preparation
of the figures to Sven Buchholz (1) and Vladimir Banarer (2).

References

[Arena et al., 1997] Arena, P., Fortuna, L., Museato, G., and Xibilia, M. (1997). Mul-
tilayer perceptrons to approximate quaternion valued functions. Neural Networks,
10(2):335-342.

[Banarer et al., 2003a] Banarer, V., Perwass, C., and Sommer, G. (2003a). Design of
a multilayered feed-forward neural network using hypersphere neurons. In Proc.
Int. Conf. Computer Analysis of Images and Patterns, CAIP 2003, Groningen,
August 2003. accepted.

[Banarer et al., 2003b] Banarer, V., Perwass, C., and Sommer, G. (2003b). The hy-
persphere neuron. In 11th European Symposium on Artificial Neural Networks,



28

ESANN 2003, Bruges, pages 469-474. d-side publications, Evere, Belgium.

[Brackx et al., 1982] Brackx, F., Delanghe, R., and Sommen, F. (1982). Clifford Anal-
ysis. Pitman Advanced Publ. Program, Boston.

[Buchholz and Sommer, 2000a] Buchholz, S. and Sommer, G. (2000a). A hyperbolic
multilayer perceptron. In Amari, S., Giles, C., Gori, M., and Piuri, V., editors,
International Joint Conference on Neural Networks, IJCNN 2000, Como, Italy,
volume 2, pages 129-133. IEEE Computer Society Press.

[Buchholz and Sommer, 2000b] Buchholz, S. and Sommer, G. (2000b). Learning geo-
metric transformations with Clifford neurons. In Sommer, G. and Zeevi, Y., editors,
2nd International Workshop on Algebraic Frames for the Perception-Action Cycle,
AFPAC 2000, Kiel, volume 1888 of LNCS, pages 144-153. Springer-Verlag.

[Buchholz and Sommer, 2000c] Buchholz, S. and Sommer, G. (2000c). Quaternionic
spinor MLP. In 8th European Symposium on Artificial Neural Networks, ESANN
2000, Bruges, pages 377-382.

[Buchholz and Sommer, 2001a] Buchholz, S. and Sommer, G. (2001a). Clifford al-
gebra multilayer perceptrons. In Sommer, G., editor, Geometric Computing with
Clifford Algebra, pages 315-334. Springer-Verlag, Heidelberg.

[Buchholz and Sommer, 2001b] Buchholz, S. and Sommer, G. (2001b). Introduction
to neural computation in Clifford algebra. In Sommer, G., editor, Geometric Com-
puting with Clifford Algebra, pages 291-314. Springer-Verlag, Heidelberg.

[Biilow, 1999] Biilow, T. (1999). Hypercomplex spectral signal representations for
the processing and analysis of images. Technical Report Number 9903, Christian-
Albrechts-Universitét zu Kiel, Institut fiir Informatik und Praktische Mathematik.

[Biilow et al., 2000] Biilow, T., Pallek, D., and Sommer, G. (2000). Riesz transforms
for the isotropic estimation of the local phase of Moiré interferograms. In Sommer,
G., Kriiger, N., and Perwass, C., editors, Mustererkennung 2000, pages 333-340.
Springer-Verlag, Heidelberg.

[Bilow and Sommer, 2001] Biilow, T. and Sommer, G. (2001). Hypercomplex signals
- a novel extension of the analytic signal to the multidimensional case. IEEFE
Transactions on Signal Processing, 49(11):2844-2852.

[Dress and Havel, 1993] Dress, A. and Havel, T. (1993). Distance geometry and ge-
ometric algebra. Foundations of Physics, 23(10):1357-1374.

[Faugeras, 1995] Faugeras, O. (1995). Stratification of three-dimensional vision: pro-
jective, affine and metric representations. Journal of the Optical Society of America,
12(3):465-484.

[Felsberg, 2002] Felsberg, M. (2002). Low-level image processing with the structure
multivector. Technical Report Number 0203, Christian-Albrechts-Universitit zu
Kiel, Institut fiir Informatik und Praktische Mathematik.

[Felsberg and Sommer, 2000] Felsberg, M. and Sommer, G. (2000). The multidimen-
sional isotropic generalization of quadrature filters in geometric algebra. In Som-
mer, G. and Zeevi, Y., editors, 2nd International Workshop on Algebraic Frames
for the Perception-Action Cycle, AFPAC 2000, Kiel, volume 1888 of LNCS, pages
175-185. Springer-Verlag.

[Felsberg and Sommer, 2001] Felsberg, M. and Sommer, G. (2001). The monogenic
signal. IEEE Transactions on Signal Processing, 49(12):3136-3144.



A Geometric Algebra Approach to Some Problems of Robot Vision 29

[Felsberg and Sommer, 2002] Felsberg, M. and Sommer, G. (2002). The structure
multivector. In Dorst, L., Doran, C., and Lasenby, J., editors, Applications of
Geometric Algebra in Computer Science and Engineering, pages 437-446. Proc.
AGACSE 2001, Cambridge, UK, Birkhduser Boston.

[Felsberg and Sommer, 2003] Felsberg, M. and Sommer, G. (2003). The monogenic
scale-space: A unifying approach to phase-based image processing in scale-space.
Journal of Mathematical Imaging and vision. accepted.

[Georgiou and Koutsougeras, 1992] Georgiou, G. and Koutsougeras, C. (1992). Com-
plex domain back propagation. IEEE Trans. Circ. and Syst. 11, 39:330-334.

[Granlund and Knutsson, 1995] Granlund, G. and Knutsson, H. (1995). Signal Pro-
cessing for Computer Vision. Kluwer Academic Publ., Dordrecht.

[Hahn, 1996] Hahn, S. (1996). Hilbert Transforms in Signal Processing. Artech House,
Boston, London.

[Hestenes, 1991] Hestenes, D. (1991). The design of linear algebra and geometry.
Acta Appl. Math., 23:65-93.

[Hestenes, 1993] Hestenes, D. (1993). New Foundations for Classical Mechanics.
Kluwer Academic Publ., Dordrecht.

[Hestenes et al., 2001] Hestenes, D., Li, H., and Rockwood, A. (2001). New algebraic
tools for classical geometry. In Sommer, G., editor, Geometric Computing with
Clifford Algebras, pages 3-23. Springer-Verlag, Heidelberg.

[lijima, 1959] Iijima, T. (1959). Basic theory of pattern observation (in japanese). In
Papers of Technical Group on Automation and Automatic Control. IECE, Japan.
[Krieger and Zetzsche, 1996] Krieger, G. and Zetzsche, C. (1996). Nonlinear image

operators for the evaluation of local intrinsic dimensionality. IEEE Trans. Image
Process., 5:1026—-1042.

[Li et al., 2001] Li, H., Hestenes, D., and Rockwood, A. (2001). Generalized homoge-
neous coordinates for computational geometry. In Sommer, G., editor, Geometric
Computing with Clifford Algebras, pages 27-59. Springer-Verlag, Heidelberg.

[Pauli, 2001] Pauli, J. (2001). Learning-Based Robot Vision, volume 2048 of Lecture
Notes in Computer Science. Springer-Verlag, Heidelberg.

[Porteous, 1995] Porteous, 1. (1995). Clifford Algebras and the Classical Groups.
Cambridge University Press, Cambridge.

[Rohr, 1992] Rohr, K. (1992). Recognizing corners by fitting parametric models.
International Journal Computer Vision, 9:213-230.

[Rosenhahn and Sommer, 2002] Rosenhahn, B. and Sommer, G. (2002). Pose esti-
mation in conformal geometric algebra, part I: The stratification of mathematical
spaces, part II: Real-time pose estimation using extended feature concepts. Tech-
nical Report Number 0206, Christian-Albrechts-Universitat zu Kiel, Institut fir
Informatik und Praktische Mathematik.

[Sommer, 1992] Sommer, G. (1992). Signal theory and visual systems. In Measure-
ment 92, pages 31-46. Slovac Acad. Science, Bratislava.

[Sommer, 1997] Sommer, G. (1997). Algebraic aspects of designing behavior based
systems. In Sommer, G. and Koenderink, J., editors, Algebraic Frames for the
Perception and Action Cycle, volume 1315 of Lecture Notes in Computer Science,
pages 1-28. Proc. Int. Workshop AFPAC’97, Kiel, Springer—Verlag, Heidelberg.



30

[Sommer, 2003] Sommer, G. (2003). The geometric algebra approach to robot vision.
Technical Report Number 0304, Christian-Albrechts-Universitat zu Kiel, Institut
fiir Informatik und Praktische Mathematik.

[Stein and Weiss, 1971] Stein, E. and Weiss, G. (1971). Introduction to Fourier Anal-
ysis on Fuclidean Spaces. Princeton University Press, Princeton, N.J.

[Yaglom, 1988] Yaglom, M. (1988). Feliz Klein and Sophus Lie. Birkhduser, Boston.

[Zetzsche and Barth, 1990] Zetzsche, C. and Barth, E. (1990). Fundamental limits of
linear filters in the visual processing of two-dimensional signals. Vision Research,
30:1111-1117.



