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Abstract Clifford’s geometric algebra, in particular the algebra of physical space
(APS), lubricates the paradigm shifts from the Newtonian worldview
to the post-Newtonian theories of relativity and quantum mechanics.
APS is an algebra of vectors in physical space, and its linear subspaces
include a 4-dimensional space of paravectors (scalars plus vectors). The
metric of the latter has the pseudo-Euclidean form of Minkowski space-
time, with which APS facilitates the transition from Newtonian me-
chanics to relativity without the need of tensors or matrices. APS also
provides tools, such as spinors and projectors, for solving classical prob-
lems and for smoothing the transition to quantum theory. This lecture
concentrates on paravectors and applications to relativity and electro-
magnetic waves. A following lecture will extend the treatment to the
quantum/classical interface.
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Introduction
Devices such as single-electron transistors and switches, single photon

masers, and quantum computers are hot topics. Not only is it difficult to
ignore quantum and relativistic effects in such devices; these effects may
often be dominant. Indeed, the theory of electromagnetic phenomena is
inherently relativistic, and impetus behind quantum computation is to
employ quantum superposition to make a new breed of computer vastly
superior to current ones for certain tasks.

Relativity and quantum theory were introduced roughly a century
ago. They both entail paradigm shifts from the assumptions made by
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Newton, but our teaching has not fully adapted. Undergraduate in-
struction still begins with Newtonian mechanics, and only after New-
ton’s worldview is ingrained does it progress to the more difficult and
abstract mathematics of quantum theory and relativity. In this lecture, I
suggest that much of the apparent dichotomy between the mathematics
of Newtonian mechanics and that of both quantum theory and relativity
arises because we have not been using the best formulation to describe
the physics.

Clifford’s geometric algebra, in particular the algebra of physical space
(APS), empowers classical physics with geometric tools that lead to a
covariant formulation of relativity and are strikingly similar to tools
common in quantum theory. [1, 2] With APS, quantum theory and rel-
ativity can be taught with the same mathematics as Newtonian physics,
and this permits an earlier, smoother introduction to post-Newtonian
physics. This, in turn, encourages students to build intuition consistent
with relativistic and quantum phenomena and properly prepares them
for the quantum age of the 21st century.

The principal purpose of this lecture is to demonstrate that the struc-
ture and geometry of APS make it a natural and minimal model for
both Newtonian and relativistic mechanics. It is natural in that it as-
sociates quantities much in the same way that humans usually do, and
it is minimal in that it avoids the assumption of additional structure
that is not relevant to the physics. I start by reviewing the Clifford
algebras commonly used in physics and their relation to APS, which I
introduce as an algebra of spatial vectors. However, we quickly note
that APS contains a 4-dimensional paravector space with the metric
of spacetime, and it can be used to formulate a covariant approach to
relativity. Multiparavectors and their Lorentz transformations are also
discussed and interpreted. The relation of APS to the spacetime algebra
(STA) is discussed in detail with an emphasis on the difference between
absolute and relative formulations of relativity. The quantum-like tools
of eigenspinors and projectors are introduced, along with applications to
the electrodynamics of Maxwell and Lorentz, including a study of Stokes
parameters and light polarization.

1. Clifford Algebras in Physics
The importance of Clifford algebras to physics and engineering is in-

creasingly recognized, [3–8] and most physicists have encountered Clif-
ford algebras in some guise. The three most commonly employed in
physics are the quaternion algebra H =C�0,2, the algebra of physical
space (APS) C�3, and the spacetime algebra (STA) C�1,3 . They are
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closely related. We use the common notation [9] C�p,q for the Clifford
algebra of a vector space of metric signature (p, q) , and C�p ≡ C�p,0 .

When Hamilton introduced vectors in 1843, they were part of an
algebra of quaternions. [10] The superiority of H for matrix-free and
coordinate-free computations of rotations in physical space has been re-
cently rediscovered by space programs, the computer-games industry,
and robotics engineering. Furthermore, H has been investigated as a
replacement of the complex field in an extension of Dirac theory. [11]
Quaternions were used by Maxwell and Tait to express Maxwell’s equa-
tions of electromagnetism in compact form, and they motivated Clifford
to find generalizations based on Grassmann theory.

Hamilton’s biquaternions (complex quaternions) are isomorphic to
APS: H⊗C � C�3 , familiar to physicists as the algebra of the Pauli spin
matrices. The even subalgebra C�+

3 is isomorphic to H over the reals, and
the correspondences i ↔ e3e2, j ↔ e1e3, k ↔ e2e1 identify pure quater-
nions with bivectors in APS. APS distinguishes cleanly between vectors
and bivectors, in contrast to most approaches with complex quaternions.
The identification of the volume element e1e2e3 = i (see next section)
endows the unit imaginary with geometrical significance and helps ex-
plain the widespread use of complex numbers in physics. [12] The sign
of i is reversed under parity inversion, and imaginary scalars and vectors
correspond to pseudoscalars and pseudovectors, respectively.

APS is also isomorphic to the even part of STA: C�3 � C�+
1,3. STA is

familiar as the algebra of Dirac’s gamma matrices, where each matrix
γµ, µ = 0, 1, 2, 3, represents a unit vector in spacetime. To be sure,
Dirac’s electron theory (1928) was based on a matrix representation of
C�1,3 over the complex field, whereas STA, pioneered by Hestenes [13–15]
for use in many areas of physics, is C�1,3 over the reals.

Clifford algebras of higher-dimensional spaces have also been used
in robotics [16], many-electron systems, and elementary-particle theory
[17]. This lecture focuses on APS, although generalizations to C�n are
made where convenient, and one section is devoted to the relation of
APS to STA. A full study of APS is beyond the scope of this lecture and
can be found elsewhere [6], but the algebra is sufficiently simple that we
can easily present its foundation and structure.

1.1 APS: an Algebra of Vectors
To form any algebra, we need elements and an associative product

among them. The elements of APS are the vectors of physical space
u,v,w, and all their products uv,uvw,uu, . . .. If we start with vectors
in an n-dimensional Euclidean space, then only one axiom is needed to
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define the algebraic product: the square of any vector u is its square
length (a real number, a scalar):

uu ≡ u2= u · u . (1)

That’s it. This axiom, together with the usual rules for adding and
multiplying square matrices, determines the entire algebra.

Let’s put u = v + w. The axiom implies that

vw + wv = 2v · w . (2)

Evidently the algebra is not commutative. If v and w are perpendicular,
they anticommute. Let {e1, e2, · · ·} be a basis of orthogonal unit vectors
in the n-dimensional Euclidean space. Then e2

1 = 1 and e1e2 = −e2e1.
We can be sure that e1e2 doesn’t vanish because it squares to −1 :
e1e2e1e2 = −1. The product of perpendicular vectors is a new element
called a bivector. It represents a directed area in the plane of the vectors.
The “direction” corresponds to circulation in the plane: if the circulation
is reversed, the sign of the bivector is reversed. The bivector replaces the
vector cross product of polar vectors, but unlike the usual cross product,
it is intrinsic to the plane and can be applied to planes in spaces of more
than 3 dimensions.

Bivectors can also be viewed as operators on vectors. They generate
rotations and reflections in the plane. To rotate any vector u = u1e1 +
u2e2 in the e1e2 plane by a right angle, multiply it by the unit bivector
e1e2 : ue1e2 = u1e2 − u2e1. The counterclockwise sense of the rotation
when u is multiplied from the right corresponds to the circulation used
to define the “direction” of e1e2. Multiplication from the left reverses
the rotation. To rotate u in the plane by an arbitrary angle φ multiply
it by a linear combination of 1 (no rotation) and e1e2:

u (cos φ + e1e2 sin φ) = u exp (e1e2φ)

Note the exponential function of the bivector e1e2φ. It can be defined
by its power-series expansion because all powers of bivectors can be
calculated in the algebra. The Euler-type relation for exp (e1e2φ) follows
from the fact that e1e2 squares to −1.

A general vector v, with components both in the plane and perpen-
dicular to it, is rotated by the angle φ in the e1e2 plane by

v → RvR†, (3)
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where the rotors R,R† are

R = exp (−e1e2φ/2) = cos
φ

2
− e1e2 sin

φ

2
(4)

R† = cos
φ

2
− (e1e2)

† sin
φ

2
= cos

φ

2
− e2e1 sin

φ

2
= R−1 . (5)

The dagger † denotes a conjugation called reversion,1 in which the order
of vectors in products is reversed. Thus, for any vectors v,w,, (vw)† =
wv. The reversion of other elements, say AB, can then be found from
the rule (AB)† = B†A†. An element equal to its reversion is said to
be real, whereas one equal to minus its reversion is imaginary. The
two-sided spinorial form of (3) preserves the reality of the transformed
vector. From (5), R is unitary and consequently all products of vectors
transform in the same way (3). In particular, the bivector e1e2 commutes
with the rotors exp (±e1e2φ/2) and is therefore invariant under rotations
in the e1e2 plane. It is equally well expressed as the ordered product of
any pair of orthonormal vectors in the plane.

The trivector e1e2e3 squares to −1 and commutes with all vectors that
are linear combinations of e1, e2, and e3. More generally, products of k
orthonormal basis vectors ej can be reduced if two of them are the same,
but if they are all distinct, their product is a basis k-vector. In an n-
dimensional space, the algebra contains

(n
k

)
such linearly independent k-

vectors, and any real linear combination of them is said to be an element
of grade k . Thus, scalars have grade 0, vectors grade 1, bivectors grade
2, trivectors grade 3, and so on.

In APS, where the number of dimensions is n = 3, the e1e2e3 is the
highest-grade element, namely the volume element, and it commutes
with every vector and hence with all elements. It can be identified with
the unit imaginary:

e1e2e3 = i . (6)

Note that i changes sign under spatial inversion: ek → −ek, k = 1, 2, 3.
Imaginary scalars are called pseudoscalars because of this sign change.
Any bivector can be expressed as an imaginary vector, called a pseu-
dovector. For example,

e1e2 = e1e2 (e1e2e3) /i = ie3. (7)

The center of APS (the part that commutes with all elements) is spanned
by {1, i} and is identified with the complex field. Every element of APS

1A tilde ˜is often used to indicate reversal, but in spaces of definite metric such as Euclidean
spaces, the dagger is common since it corresponds to Hermitian conjugation in any matrix
representation in which the matrices representing the basis vectors are Hermitian.
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is a linear combination of 1, e1, e2, e3, ie1, ie2, ie3, i over the reals or,
equivalently, of 1, e1, e2, e3 over the complex field. The element ∗x = −ix
is said to be the Clifford-Hodge dualof x.

1.2 Existence
We should check that our algebra exists. It is possible to define struc-

tures that are not self-consistent. The existence of a matrix represen-
tation is sufficient to prove existence. The canonical one replaces unit
vectors by Pauli spin matrices. There are an infinite number of valid
representations. They share the same algebra and that is all that mat-
ters.

2. Paravector Space as Spacetime
APS includes not only the 3-dimensional linear space of physical vec-

tors, but also other linear spaces, in particular the 4-dimensional linear
space of scalars plus vectors. In mathematical terms, this 4-dimensional
linear space is also a vector space and its elements are vectors, but to
distinguish them from spatial vectors, we call them paravectors. A par-
avector p can generally be written

p = p0 + p (8)

where p0 is a scalar and p = pkek, k = 1, 2, 3, a physical vector (the
summation convention for repeated indices is used). It is convenient to
put e0 = 1 so that we can write

p = pµeµ, µ = 0, 1, 2, 3. (9)

The metric of the 4-dimensional paravector space is determined by the
quadratic form (“square length”) of paravectors. Since p2 is not generally
a pure scalar, we need the Clifford conjugate of p, p̄ = pµēµ = p0 − p
since the product pp̄ = p̄p =

(
p0

)2 −p2 is always a scalar. If we take pp̄
to be the quadratic form of p and use

〈x〉S ≡ 1
2

(x + x̄) = 〈x̄〉S (10)

to denote the scalarlike (that is scalar plus pseudoscalar) part of any
element x, then

pp̄ = 〈pp̄〉S = pµpνηµν (11)

and the Minkowski metric of spacetime ηµν = 〈eµēν〉S arises automat-
ically. Spacetime can be viewed as paravector space, and spacetime
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vectors are (real) paravectors in APS. The vector part of the paravector
is the usual spatial vector, and the scalar part is the time component.

Example 1 In units with the speed of light c = 1, the quadratic form
(or “square length”) of the spacetime displacement dr = dt + dr is

dr dr̄ = dt2 − dr2 = dt2
(
1 − v2

)
,

where v is the velocity dr/dt. If we define the dimensionless scalar known
as the proper time τ by dr dr̄ = dτ2, then we see that γdτ = dt with

γ =
dt

dτ
=

[
1 − v2

]−1/2
.

In particular, dτ = dt in a rest frame of the displacement. The dimen-
sionless proper velocity is

u =
dr

dτ
=

dt

dτ

(
1 +

dr
dt

)
= γ (1 + v) ,

and by definition it is unimodular: uū = 1. Other spacetime vectors
can be similarly represented as paravectors in APS. For example, the
energy-momentum paravector of a particle is p = mu = E + p .

In his article [18] of 1905 on special relativity, Einstein did not mention
a spacetime continuum. That was a construction proposed three years
later by Minkowski. I like to think that Einstein, had he seen it, would
have appreciated the natural appearance of the spacetime geometry in
paravector space.

2.1 Multiparavectors
From the quadratic form of the sum p + q of paravectors, we obtain

an expression for the scalar product of paravectors p and q :

〈pq̄〉S =
1
2

(pq̄ + qp̄) . (12)

One says that paravectors p and q are orthogonal if and only if 〈pq̄〉S = 0 .
The vectorlike (vector plus pseudovector) part of pq̄ is

〈pq̄〉V ≡ 1
2

(pq̄ − qp̄) = pq̄ − 〈pq̄〉S (13)

and represents the directed plane in paravector space that contains par-
avectors p and q. It is called a biparavector and can be expanded in a
basis of unit biparavectors 〈eµēν〉V with 〈eµēν〉2V = ±1 :

〈pq̄〉V = pµqν 〈eµēν〉V
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The biparavectors form a six-dimensional linear subspace of APS equal
to the direct sum of vector and bivector spaces. Since bivectors of APS
are also pseudovectors, any biparavector is also a complex vector.

Biparavectors arise most frequently in APS as operators on paravec-
tors. Thus, the unit biparavector 〈eµēν〉V , µ �= ν, rotates any paravector
p = aeµ + beν in the plane to an orthogonal direction:

〈eµēν〉V p =
1
2

(aeµēνeµ + beµēνeν − aeν ēµeµ − beν ēµeν)

= −aηµµeν + bηννeµ.

In analogy with bivectors, biparavectors generate rotations in paravec-
tor space. One of the most important biparavectors in physics is the
electromagnetic field (or “Faraday”) which in SI units with c = 1 can
be written F =

〈
∂Ā

〉
V

= E + iB,where ∂ = eµ∂/∂xµ is the paravector
gradient operator and A = φ + A is the paravector potential. We will
see below how to define F in terms of rotation rate.

Triparavectors can also be formed. The triparavector subspace of APS
is four-dimensional, the direct sum of pseudovector and pseudoscalar
spaces. The volume element of paravector space is the same as that of
the underlying vector space:

e0ē1e2ē3 = e1e2e3 = i . (14)

As seen before, it commutes with all elements of APS.

2.2 Paravector Rotations and Lorentz
Transformations

Rotations and reflections in paravector space preserve the scalar prod-
uct 〈pq̄〉S of any two paravectors. Paravector rotations have the same
spinorial form as vector rotations,

p → LpL†, (15)

where L is a unimodular element (LL̄ = 1) known as a Lorentz rotor.
Lorentz rotations are the physical Lorentz transformations of relativ-
ity: boosts, spatial rotations, and their products. In APS they can be
calculated algebraically without matrices or tensors.

Lorentz rotors for spatial rotations are just the same rotors (4) intro-
duced above, and those for boosts are similar except that the rotation
plane in paravector space includes the time axis e0. For a boost along
e1 for example, the Lorentz rotor L has the real form

L = exp
(
e1ē0

w

2

)
= cosh

w

2
+ e1 sinh

w

2
= L†, (16)
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where w is a scalar parameter called the rapidity. The Lorentz rota-
tion (15) can be calculated directly with two algebraic products, but
because it is linear in p, it is sufficient to determine the transformed
basis paravectors

uµ ≡ LeµL†. (17)

Since the proper velocity in the rest frame is unity, the Lorentz rotation
of e0 = 1 must give the proper velocity u induced by the boost on objects
initially at rest:

u = Le0L
† = LL† = γ (1 + ve1) (18)

γ = cosh w, γv = sinhw . (19)

Since e1 also commutes with the biparavector e1ē0 of the rotation plane
whereas e2 and e3 anticommute with it, the boost of the paravector basis
elements gives

u0 = ue0, u1 = ue1 (20)
u2 = e2, u3 = e3 .

The set {u0,u1,u2,u3} ≡ {uµ} is an orthonormal basis of paravectors
for the boosted system. It follows that the boost of any paravector
p = pµeµ produces

LpL† = pµuµ = u
(
p0e0 + p1e1

)
+ p2e2 + p3e3 (21)

= γ
(
p0 + vp1

)
e0 + γ

(
p1 + vp0

)
e1 + p2e2 + p3e3 .

We can eliminate the dependence on the paravector basis by introducing
components of p coplanar with the rotation plane

p� = p0e0 + p1e1

and perpendicular to it

p⊥ = p2e2 + p3e3 = p − p�.

Then the boost of p is

p → LpL† = up� + p⊥. (22)

No matrices or tensors are required, and the algebra is trivial. Algebraic
calculation of the boost is sufficiently simple to be taught at an early
stage of a student’s study of physics. Students can perform most calcula-
tions in introductory relativity texts using no more than the transforma-
tion (22) and the basic axiom (2) of the algebra. A couple of examples
will illustrate the simplicity of the approach.
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Example 2 Let Carol have proper velocity uBC as seen by Bob, and
let Bob have proper velocity uAB with respect to Alice. To find Carol’s
proper velocity uAC with respect to Alice, we boost the paravector p =
uBC by L = L† = u

1/2
AB as in (22). If the vector parts of uAB and uBC are

collinear, uAB and uBC lie in the same spacetime plane and commute.
Then p⊥ = 0 and the transformation (22) reduces to the product

uAC = uABuBC .

By writing each proper velocity in the form u = γ (1 + v) , one easily
extracts the usual result for collinear velocity composition2

vAC =
〈uAC〉V
〈uAC〉S

=
vAB + vBC

1 + vAB·vBC
.

Example 3 Consider the change in the wave paravector k of a pho-
ton when its source is boosted from rest to proper velocity u. The wave
paravector, like the momentum �k, is null, kk̄ = 0, and can be written
k = ω + k = ω

(
1 + k̂

)
, where the unit vector k̂ gives the direction and

ω the frequency of k. From (22), writing out the coplanar part of k as
k� = ω + k‖ and noting that k⊥ is a vector, we find

k = ω
(
1 + k̂

)
→ k′ = LkL† = u

(
ω + k‖

)
+ k⊥

with u = γ (1 + v) and k‖ = k · v̂ v̂ = k − k⊥, where v̂ is the unit vec-
tor along v. This transformation describes what happens to the photon
momentum when the light source is boosted. Evidently k⊥ is unchanged,
but there is a Doppler shift in ω and a change in k · v̂ :

ω′ =
〈
u

(
ω + k‖

)〉
S

= γω
(
1 + k̂ · v

)

k′ · v̂ =
〈
uv̂

(
ω + k‖

)〉
S

= γω
(
v + k̂ · v̂

)
= ω′ cos θ′.

The ratio k′ · v̂/ω′ shows how the photons are thrown forward

cos θ′ =
v + cos θ

1 + v cos θ
.

in what is called the “headlight” effect.

Example 4 The results of the previous example can be combined with a
qualitative description of Thomson scattering to explain how high-energy

2Note that the cleanest way to compose general Lorentz rotations is to multiply rotors:
LAC = LABLBC . See also the section below on eigenspinors.
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gamma-ray photons are produced near sources of energetic electrons. In
Thomson scattering, a electron initially at rest scatters an unpolarized
beam of radiation into all directions. It is the limit of Compton scatter-
ing when ω 	 m, the rest energy of the electron. In the Lab frame, the
electrons are ultra-relativistic with energies γm 
 m, and they collide
with photons of the 2.7K blackbody radiation that permeates space. Let
ω0 be Lab frequency of the background radiation. In the rest frame of
the electron, this gets Doppler shifted to roughly γω0 (within a factor
between 0 and 2, depending on angle), and Thomson scattering occurs,
redistributing the photons in all directions. Transforming the scattered
photons back to the Lab gives a collimated beam of photons in the di-
rection of the electron velocity with energies of order γ2ω0. Thus, 5GeV
electrons (γ = 104) can raise 10−2 eV photons to MeV energies.

An attractive feature of this simple algebraic approach to introductory
relativity is that it is not restricted to such simple cases. Rather it is part
of an algebra that simplifies computations for all relativistic phenomena.
Lorentz rotations of multiparavectors, in particular, are readily found
by putting together those for paravectors. Thus, for the boost along
e1 considered above, the biparavectors e1ē0 and e2ē3 are seen to be
invariant whereas e1ē2, e1ē3, e0ē2, e0ē3 are multiplied from the left by u.

More generally, the paravector product pq̄ transforms to LpL†(LqL†) =
Lpq̄L̄. From this we can confirm that scalar products (12) of paravectors
are Lorentz invariant and that any biparavector, say F, transforms as

F → LFL̄ . (23)

The power of APS allows us to generalize expression (22) to an arbi-
trary Lorentz rotation. We start with an arbitrary simple Lorentz rota-
tion, that is, a rotation in a single paravector plane. Simple rotations in-
clude all spatial rotations, pure boosts, and many boost-rotation combi-
nations. We again split p into one component p� coplanar with the rota-
tion plane plus another component p⊥ perpendicular to it: p = p� +p⊥.
Consider a biparavector 〈uv̄〉V , which represents the plane containing
the independent paravectors u and v. By expansion it is easy to see that

〈uv̄〉V u =
uv̄u − vūu

2
= u

(
v̄u − ūv

2

)
= u 〈uv̄〉†V .

Similarly, one finds 〈uv̄〉V v = v 〈uv̄〉†V . The component p� coplanar
with 〈uv̄〉V is a linear combination of u and v and therefore obeys the
same relation

〈uv̄〉V p� = p� 〈uv̄〉†V .
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On the other hand, the component p⊥ is orthogonal to u and v,
〈
ūp⊥

〉
S

=
0 =

〈
up̄⊥

〉
S

and similarly for u replaced by v. Consequently,

〈uv̄〉V p⊥ =
uv̄p⊥ − vūp⊥

2
= −p⊥ 〈uv̄〉†V .

It follows that if L is any Lorentz rotation in the 〈uv̄〉V plane, then

p�L† = Lp�, p⊥L† = L̄p⊥,

and the rotation (15) reduces to

p → Lp�L† + Lp⊥L† = L2p� + p⊥. (24)

Expression (22) is a special case of this relation for a pure boost. We can
now generalize the result further to include compound Lorentz rotations.
Any rotor can be expressed as

L = ± exp
(

1
2
W

)
, (25)

and the arbitrary biparavector W can always be expanded as a sum of
simple biparavectors W = W1 + W2 = (1 + iα)W1, where α is a real
scalar. The relation W2 = iαW1 means that W2 is proportional to
the dual of W1 so that W1 and W2 represent orthogonal planes: every
paravector in W1 is orthogonal to every paravector in W2. Since W1

and W2 commute, L can be written as a product of commuting simple
Lorentz rotations:

L = L1L2, L1 = eW1/2, L2 = eW2/2.

Every paravector p can be split into one component, p1, coplanar with
W1 and another, p2, coplanar with W2 . Two applications of the simple
transformation result (24) gives its generalization

p → LpL† = L1L2 (p1 + p2)L†
2L

†
1 = L2

1p1 + L2
2p2 . (26)

Note that the Lorentz transformations of paravectors p and p† are the
same, as are those of biparavectors F and F̄. However, p and p̄ have
distinct transformations as do F and F†. As a consequence, Lorentz
transformations mix time and space components of p, but not its real and
imaginary parts, whereas such transformations of F leave F vectorlike
but mix vector (real) and bivector (imaginary) parts.
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3. Interpretation
Note that in APS, the Lorentz rotation acts directly on paravectors

and their products, and not on scalar coefficients. Contrast this with
matrix or tensor formulations where transformations are given only for
the coefficients. Of course, the two approaches are easily related. For
example, in the boost (21) of p, if p and the transformed p′ = LpL† are
expanded in the same basis {eµ} , we can simply read off the transfor-
mation of coefficients:

p′0 = γ
(
p0 + vp1

)
p′1 = γ

(
p1 + vp0

)
p′2 = p2, p′3 = p3,

and this is easily cast into standard matrix form. The two approaches are
therefore equivalent, but the APS approach of transforming paravectors
is more geometric and does not require Lorentz transformations that
are aligned with basis elements. Indeed, the algebraic transformation
p → p′ = LpL† is independent of basis.

A basis is needed only to compare measured coefficients. In general,
the transformed paravector p′ is p′ = p′µeµ = pνuν , where as above
uµ = LeµL† are the transformed basis paravectors. To isolate individual
coefficients from an expansion, we introduce reciprocal basis paravectors
eµ defined by the scalar products

〈eµēν〉S = δν
µ ,

where δν
µ is the usual Kronecker delta. The reciprocal paravectors of the

standard basis elements eµ are e0 = e0, ek = −ek, k = 1, 2, 3. With
their help, we obtain

p′µ = pν 〈uν ēµ〉S = pν
〈
LeνL

†ēµ
〉

S
≡ Lµ

νpν . (27)

3.1 Active, Passive, and Relative
Transformations

It is common to distinguish active transformations from passive ones.
In active transformations, a single observer compares objects in differ-
ent inertial frames, whereas in passive transformations a single object
is observed by inertial observers in relative motion to each other. The
transformations described above were active. However, APS accommo-
dates both active and passive interpretations. The mathematics is the
same, as seen from expression (27) for the transformation elements

Lµ
ν =

〈(
LeνL

†
)
ēµ

〉
S

=
〈
eν

(
L†ēµL

)〉
S

=
〈
eν

(
L̄eµL̄†)〉

S
. (28)
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Here we used the property that the scalar part of a product is inde-
pendent of the order 〈xy〉S = 〈yx〉S for any elements x, y of APS. The
first equality of (28) finds the components of the transformed basis par-
avectors on the original basis, whereas the last finds components of the
original basis on the inversely transformed basis. These are alternative
ways to interpret the same expression.

To see the relation between active and passive transformations more
explicitly, consider the passive transformation of a fixed paravector from
one observer, say Alice, to another, say Bob. Let pA = pµ

Aeµ be the
paravector as seen by Alice in terms of Alice’s standard (rest) basis.
Bob, who moves at proper velocity u with respect to Alice, will measure
a different paravector, namely pB = pµ

Beµ, with respect to his rest frame.
Note that the paravector basis in expansions of both pA and pB is the
same, namely the standard basis {eµ} , even though pA is expressed
relative to Alice and pB relative to Bob. The reason is that the standard
basis {eµ} is relative; it is at rest relative to the observer. To relate pA

and pB, both must be expressed relative to the same observer. Bob’s
frame as seen by Alice is

{uµ} =
{
LeµL†

}
(29)

with u0 = u. Thus pA can be written

pA = pµ
Aeµ = pν

Buν = LpBL† , (30)

which can be inverted to give the passive transformation

pA → pB = L̄pAL̄†. (31)

This has the same form as the active transformation, but with the inverse
Lorentz rotor.

APS uses the same mathematics to find not only passive and active
Lorentz rotations, but also any mixture of passive and active rotations:
all that counts is the relative Lorentz rotation of the observed object with
respect to the observer. This property means that the basis paravectors
themselves represent not an absolute frame, but rather a frame relative
to the observer (or Lab). The proper basis {eµ} with e0 = 1 represents
a frame at rest with respect to the observer. In APS, as in experiments,
it is only the relative motion and orientation of the observed object with
respect to the observer that is significant.

3.2 Covariant Elements and Invariant Properties
Experiments generally measure real scalars such as the size of paravec-

tor components on a given basis. The most meaningful geometric quan-
tities in relativity, however, are spacetime vectors and products thereof
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that simply rotate and reflect in paravector space under the action of
Lorentz transformations. Such quantities are said to be covariant. In
APS, covariant spacetime vectors are real paravectors, and the bipar-
avectors and triparavectors formed from them are also covariant, but
one can move back and forth easily between covariant quantities and
their components. Individual components are not generally covariant.
Some properties, such as the scalar product of covariant paravectors and
the square of simple covariant biparavectors, are invariant, unchanged
by Lorentz rotations. Such properties are known as Lorentz scalars.

3.3 Relation of APS to STA
An alternative to the paravector model of spacetime is the spacetime

algebra (STA) introduced by David Hestenes [13, 15]. APS and STA are
closely related, and it is the purpose of this section show how.

STA is the geometric algebra C�1,3 of Minkowski spacetime. Whereas
the Minkowski spacetime metric appears automatically in APS, it is
imposed in STA. In each frame STA starts with a 4-dimensional or-
thonormal basis {γ0, γ1, γ2, γ3} ≡ {γµ} satisfying

γµγν + γνγµ = 2ηµν ,

where as previously, ηµν are elements of the metric tensor (ηµν) =
diag (1,−1,−1,−1) . The volume element in STA is I = γ0γ1γ2γ3 . Al-
though it is referred to as the unit pseudoscalar and squares to −1, it
anticommutes with vectors, thus behaving more like an additional spa-
tial dimension than a scalar.

The frame chosen for a system can be independent of the observer
and her frame {γ̂µ} . Any spacetime vector p = pµγµ expanded in the
system frame {γµ} can be multiplied by observer’s time axis γ̂0 to give

pγ̂0 = p · γ̂0 + p ∧ γ̂0 = pµuµ , (32)

where3 uµ = γµγ̂0 . In particular, u0 = γ0γ̂0 is the proper velocity of
the system frame {γµ} with respect to the observer frame {γ̂µ}. If the
system frame is at rest with respect to the observer, then γ0 = γ̂0 and

3A double arrow might be thought more appropriate than an equality here, because uµ and
γµ, γ̂0 act in different algebras. However, we are identifying C�3 with the even subalgebra
of C�1,3, so that the one algebra is embedded in the other. Caution is still needed to avoid
statements such as

i = e1e2e3 = e1 ∧ e2 ∧ e3
wrong!

= γ̂1 ∧ γ̂0 ∧ γ̂2 ∧ γ̂0 ∧ γ̂3 ∧ γ̂0 = 0 .

This is not valid because the wedge products on either side of the third equality refer to
different algebras and are not equivalent.
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the relative basis paravectors uµ are replaced by proper basis elements
eµ. The result

pγ̂0 = pµeµ = p0 + p,

where e0 ≡ 1 and ek ≡ γkγ̂0, is called a space/time split. The asso-
ciation γµγ̂0 = eµ when γ0 = γ̂0 establishes the previously mentioned
isomorphism between the even subalgebra of STA and APS. Together
with uµ = γµγ̂0 for a more general system basis, it emphasizes that the
basis vectors in APS are relative: they always relate two frames, the
system frame and the observer frame, each of which has its own basis in
STA.

Clifford conjugation in APS corresponds to reversion in STA, indi-
cated by a tilde. For example, ūµ = (γµγ̂0)˜ = γ̂0γµ . In particular,
the proper velocity of the observer frame {γ̂µ} with respect to γ0 is
ū0 = γ̂0γ0 , the inverse of u0 = γ0γ̂0. It is not possible to make all of the
basis vectors in any STA frame Hermitian, but one usually takes γ̂†

0 = γ̂0

and γ̂†
k = −γ̂k in the observer’s frame {γ̂µ} . More generally, Hermitian

conjugation of an arbitrary element Γ in STA combines reversion with
reflection in the observer’s time axis γ̂0: Γ† = γ̂0Γ̃γ̂0 . For example, the
relation

u†
µ =

[
γ̂0 (γµγ̂0)

˜ γ̂0

]
= γµγ̂0 = uµ

shows that all the paravector basis vectors uµ are Hermitian. It is im-
portant to note that Hermitian conjugation is frame dependent in STA
just as Clifford conjugation of paravectors is in APS.

Example 5 The Lorentz-invariant scalar part of the paravector product
pq̄ in APS has the same expansion as in STA:

〈pq̄〉S =
1
2
pµqν (eµēν + eν ēµ)

=
1
2
pµqν (γµγ̂0γ̂0γν + γν γ̂0γ̂0γµ)

= pµqνηµν .

Basis biparavectors in APS become basis bivectors in STA:

1
2

(eµēν − eν ēµ) =
1
2

(γµγ̂0γ̂0γν − γν γ̂0γ̂0γµ)

=
1
2

(γµγν − γνγµ) .

Lorentz transformations in STA are effected by γµ → LγµL̃, with
LL̃ = 1. Every product of basis vectors transforms the same way. An
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active transformation keeps the observer frame fixed and transforms only
the system frame. Suppose the system frame is related to the observer
frame by the Lorentz rotor L : γµ = Lγ̂µL̃ . Then

uµ = γµγ̂0 = Lγ̂µL̃γ̂0 = Lγ̂µγ̂0

(
γ̂0L̃γ̂0

)
= LeµL†,

which coincides with the relation in APS. In a passive transformation,
it is the system frame that stays the same and the observer’s frame that
changes. Let us suppose that the observer moves from frame {γµ} to
frame {γ̂µ} where γµ = Lγ̂µL̃. Then

eµ = γµγ0 → uµ = γµγ̂0 .

To re-express the transformed relative coordinates uµ in terms of the
original eµ , we must expand the system frame vectors γµ in terms of the
observer’s transformed basis vectors γ̂µ. Thus

uµ = Lγ̂µL̃γ̂0 = LeµL†.

The mathematics is identical to that for the active transformation, but
the interpretation is different. It is important to stress that the system
and observer frames are distinct in STA, and under active or passive
transformations, only one of them changes. Confusion about this point
can easily lead to errors in the transformation properties of elements and
their relation space/time splits.

Since the transformations can be realized by changing the observer
frame and keeping the system frame constant, the physical objects can
be taken to be fixed in STA, giving what is sometimes referred to as an
invariant formulation of relativity. Note, however, that the name “in-
variant” for covariant objects is consistent only if no active Lorentz trans-
formations are needed. In order to avoid inconsistency and to prevent
confusion of covariant expressions with Lorentz scalars such as scalar
products of spacetime vectors, I prefer to call STA an absolute-frame
formulation of relativity.

We have seen that a Lorentz rotation has the same physical effect
whether we rotate the object forward or the observer backward or some
combination. This is trivially incorporated in APS where only the ob-
ject frame relative to the observer enters. The absolute frames of STA,
while sometimes convenient, impose an added structure not required by
experiment.

The space/time split of a property in APS is simply a result of ex-
panding into vector grades in the observer’s proper basis {eµ}:

p = p0 + p
F = E + iB .
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Although p and F are covariant, the split is not; it is valid only in a
rest frame of the observer. To relate this to the split as seen in a frame
moving with proper velocity u with respect to the observer, we expand
p in the paravector basis

{
uµ = LeµL†} and F in the corresponding

biparavector basis
{〈uµūν〉V

}
, where u = u0. The passive transforma-

tion of the observer to the moving frame replaces uµ by eµ, and the
new space/time split simply separates the result into vector grades. The
physical fields, momenta, etc. are transformed and are not invariant in
APS but covariant, that is, under a Lorentz transformation, the form of
equations relating them remains the same even though the vectors and
multivectors themselves change.4

STA uses the metric of signature (1, 3) , but the pseudoEuclidean met-
ric of signature (3, 1) could equally well have been used. This alterna-
tive uses the real Clifford algebra C�3,1 in place of STA’s C�1,3.. Because
the two algebras are inequivalent, there is no simple transformation be-
tween them, and some authors have debated the relative merits of the
two choices. APS easily accommodates both possibilities. Our formu-
lation above gives a paravector metric of signature (1, 3) , but simply
by changing the overall sign on the definition of the quadratic form (or,
equivalently, of the Clifford conjugate), we obtain a paravector space of
the other signature, namely (3, 1) .

STA and APS seem equally adept at modeling relativistic phenomena.
This at first is surprising since STA has 24 = 16 linearly independent
elements whereas APS has only half that many. To understand how APS
achieves its compactness, note that Lorentz scalars are grade 0 objects
in both STA and APS, but spacetime vectors in STA are homogeneous
elements of grade 1 whereas in APS they are paravectors, which mix
grades 0 and 1. APS maintains a formal grade distinction between an
observer’s proper time axis and spatial directions by making time a
scalar and spatial direction a vector. Furthermore, spacetime planes are
represented by elements of grade 2 in STA and by biparavectors, which
combine elements of grades 1 and 2, in APS. Elements of a given grade
evidently play a double role in APS. Rather than being a disadvantage,
however, the double roles mirror common usage.

For example, the spacetime momentum of a particle at rest has only
one nonvanishing component, namely a time component equal to its
mass (c = 1), but the mass is also a Lorentz scalar giving the invariant
“length” of the momentum. In APS, the mass is simply a scalar that
can fill both roles. In STA, the two roles are represented by expressions

4You can have absolute frames in APS, if you want them for use in passive transformations,
by introducing an absolute observer.
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of different grades: the Lorentz-invariant mass is a scalar while the rest-
frame momentum is a vector. They are not equal but are instead related
by a space/time split, which requires multiplication by γ̂0 .

Another example is provided by the electromagnetic field F, which
for a given observer reduces to the electric field E if there is no magnetic
part. In APS, F is a biparavector with a vector part E and a bivector
part icB for any given observer. There is no problem in identifying E
both as a spatial vector and a spacetime plane that includes the time
axis. In STA, on the other hand, the two choices require different nota-
tion. Since F is an element of grade 2, we either specify E as F·γ̂0 or as
this times γ̂0. The expression F·γ̂0 has the form of a spacetime vector in
STA, but of course E transforms differently. The correct transformation
behavior of F·γ̂0 is obtained in STA if, as discussed above, one distin-
guishes between the observer frame {γ̂µ} and the system frame {γµ} and
applies the Lorentz rotation to only one of them.

The double-role playing of vector grades in APS is responsible for
its efficiency in modeling spacetime. STA requires twice as many de-
grees of freedom to model the same phenomena. This appears to be the
cost of having an absolute-frame formulation of relativity. Both STA
and APS easily relate a covariant representation to observer-dependent
measurements, although the connection is more direct in APS.

4. Eigenspinors
The motion of a particle is described by the special Lorentz rotor

L = Λ that transforms the particle from rest to the lab. Any property
known in the rest frame can be transformed to the lab by Λ, which is
known as the eigenspinor of the particle and is generally a function of
its proper time τ . For example, the spacetime momentum in the lab is
p = ΛmΛ†. The term “spinor” refers to the form of a Lorentz rotation
of Λ, namely

Λ → LΛ, (33)

which is the form for the composition of Lorentz rotations but is distinct
from Lorentz rotations of paravectors and their products.

The eigenspinor Λ (τ) is the solution of a time evolution equation in
the simple linear form

dΛ
dτ

≡ Λ̇ =
1
2
ΩΛ (τ) , (34)

where Ω is the spacetime rotation rate of the particle in the lab. This
approach offers new tools for classical physics. It implies that

ṗ = Λ̇mΛ† + ΛmΛ̇† = 〈Ωp〉� . (35)
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For the motion of a charge e in the electromagnetic field F = E + iB,
the identification

Ω =
e

m
F, (36)

when substituted into (35), gives the covariant Lorentz-force equation.
Note that (36) can be taken as a covariant definition of F, valid in any
inertial frame. It is trivial to find Λ for any uniform field F:

Λ (τ) = exp
(

eFτ

2m

)
Λ (0) . (37)

Solutions can also be found for relativistic charge motion in plane waves,
plane-wave pulses, or plane waves superimposed on static longitudinal
electric or magnetic fields. [19]

5. Maxwell’s Equation
Maxwell’s famous equations are inherently relativistic, and it is a

shame that so many texts treat much of electrodynamics in nonrelativis-
tic approximation. One reason given for introducing relativity only late
in an electrodynamics course is that tensors and or matrices are required
which makes the presentation more abstract and harder to interpret. In
APS we can easily display and exploit relativistic symmetries in simple
vector and paravector terms without the need of tensors or matrices.

Maxwell’s equations were written as a single quaternionic equation by
Conway (1911), Silberstein (1912), and others. In APS we can write

∂̄F = µ0j̄ , (38)

where µ0 = ε−1
0 = 4π × 3̇0 Ohm is the impedance of the vacuum, with

3̇ ≡ 2.99792458. The usual four equations are simply the four vector
grades of this relation, extracted as the real and imaginary, scalarlike and
vectorlike parts. It is also seen as the necessary covariant extension of
Coulomb’s law ∇·E = ρ/ε0. The covariant field is not E but F = E+iB,
the divergence is part of the covariant gradient ∂̄, and ρ must be part of
j̄ = ρ − j . The combination is Maxwell’s equation.5

It is a simple exercise to derive the continuity equation 〈∂j̄〉S = 0
in one step from Maxwell’s equation. One need only note that the
D’Alembertian ∂∂̄ is a scalar operator and that 〈F〉S = 0.

5We have assumed that the source is a real paravector current and that there are no con-
tributing pseudoparavector currents. Known currents are of the real paravector type, and
a pseudoparavector current would behave counter-intuitively under parity inversion. Our
assumption is supported experimentally by the apparent lack of magnetic monopoles.
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5.1 Directed Plane Waves
In source-free space (j̄ = 0), there are solutions F (s) that depend

on spacetime position only through the Lorentz invariant s = 〈kx̄〉S =
ωt − k · x, where k = ω + k �= 0 is a constant propagation paravector.
Since ∂ 〈kx̄〉S = k, Maxwell’s equation gives

∂̄F = k̄F′ (s) = 0 . (39)

In a division algebra, we could divide by k̄ and conclude that F′ (s) = 0,
a rather uninteresting solution. There is another possibility here because
APS is not a division algebra: k̄ may have no inverse. Then k has the
form k = ω

(
1 + k̂

)
, and after integrating (39) from some s0 at which

F is presumed to vanish, we get
(
1 − k̂

)
F (s) = 0, which means F (s) =

k̂F (s) . The scalar part of F vanishes and consequently
〈
k̂F (s)

〉
S

=

k̂ · F (s) = 0 so that the fields E and B are perpendicular to k̂ and
thus anticommute with it. Furthermore, equating imaginary parts gives
iB = k̂E and it follows that

F = E + iB =
(
1 + k̂

)
E (s) (40)

with E = 〈F〉� real. This is a plane-wave solution with F constant on
spatial planes perpendicular to k̂. Such planes propagate at the speed
of light along k̂. In spacetime, F is constant on the light cone k̂ · x = t.
However, F is not necessarily monochromatic, since E (s) can have any
functional form, including a pulse, and the scale factor ω, although it
has dimensions of frequency, may have nothing to do with any physi-
cal oscillation. The structure of the plane wave F is that of a simple
biparavector representing the spacetime plane containing both the null
paravector 1 + k̂ and the orthogonal direction E. This structure ensures
that F itself is null : F2 = 0 . In fact, F is what Penrose calls a null
flag. The flagpole 1 + k̂ lies on the light cone in the plane of the flag
but is orthogonal to both itself and the flag. This is the basis of an
important symmetry that is critical for determining charge dynamics in
plane waves. [19] The null-flag structure is beautiful and powerful, but
you miss it entirely if you only write out separate electric and magnetic
fields. The electric and magnetic fields are simply components of the null
flag; E gives the extent of the flag perpendicular to the flagpole, and B
represents the spatial plane swept out by E as it propagates along k̂.

The electric field E (s) determines the polarization of the wave. If
the direction of E is constant, for example E (s) = E (0) cos s, the wave
is linearly polarized along E (0) . If E rotates around k̂, for example
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E (s) = E (0) exp
(
iκk̂s

)
, κ = ±1, the wave is circularly polarized with

helicity κ. Note that the flagpole can gobble the unit vector k̂ :

F (s) =
(
1 + k̂

)
E (0) exp

(
iκk̂s

)
=

(
1 + k̂

)
exp

(
−iκk̂s

)
E (0)

=
(
1 + k̂

)
E (0) exp (−iκs) . (41)

This establishes an equivalence for null flags between rotations about the
spatial direction k̂ of the flagpole and multiplication by a phase factor.
Since the dual of F is −iF, the phase factor is said to induce duality
rotations. The energy density E =1

2

(
ε0E2 + B2/µ0

)
and the Poynting

vector S = E × B/µ0 for the plane wave are combined in

1
2
ε0FF† = E + S = ε0E2

(
1 + k̂

)
.

5.2 Polarization Basis
The application of APS to the polarization of a beam of light or

other electromagnetic radiation gives a formulation vastly simpler than
the usual approach with Mueller matrices, and it demonstrates spinorial
type transformations and additional uses of paravectors. Furthermore,
the mathematics is the same as used to describe electron polarization,
which I discuss in my next lecture.

The field F of a beam of monochromatic radiation can be expressed as
a linear combination of two independent polarization types. Both linear
and circular polarization bases are common, but a circular basis is most
convenient, partially because of the relation noted above between spatial
and duality rotations. Circularly polarized waves also have the simple
form used popularly by R. P. Feynman [20] to discuss light propagation
in terms of a rotating pointer that we can take to be E (s). A linear
combination of both helicities of a directed plane wave gives

F =
(
1 + k̂

)
Ê0e

iδk̂
(
E+eisk̂ + E−e−isk̂

)

=
(
1 + k̂

)
Ê0e

−iδ
(
E+e−is + E−eis

)
,

where E± are the real field amplitudes, δ gives the rotation of E about
k̂ at s = 0 from the unit vector Ê0, and in the second line, we gobbled
k̂’s. Because every directed plane wave can be expressed in the form
F =

(
1 + k̂

)
E (s) , it is sufficient to determine the electric field E (s) =
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〈F〉� :

E =
〈(

1 + k̂
)
Ê0E+e−iδe−is +

(
1 + k̂

)
Ê0E−e−iδeis

〉
�

=
〈[(

1 + k̂
)
Ê0E+e−iδ + Ê0

(
1 + k̂

)
E−eiδ

]
e−is

〉
�

=
〈
(ε+, ε−)Φe−is

〉
� ,

where the complex polarization basis vectors ε± = 2−1/2
(
1 ± k̂

)
Ê0 are

null flags satisfying ε− = ε†+, ε+ · ε†+ = 1 = ε− · ε†−, and the Poincaré
spinor

Φ =
√

2
(

E+e−iδ

E−eiδ

)
(42)

gives the (real) electric-field amplitudes and their phases, and it contains
all the information needed to determine the polarization and intensity
of the wave. The spinor (42) is related by unitary transformation to the
Jones vector, which uses a basis of linear polarization.

5.2.1 Stokes Parameters. To describe partially polarized light,
we can use the coherency density, [6] which in the case of a single
Poincaré spinor is

ρ = ε0ΦΦ† = ρµσµ , (43)

where the σµ are the Pauli spin matrices. The normalization factor
ε0 has been chosen to make ρ0 the time-averaged energy density. The
coefficients ρµ = 〈ρσµ〉S are the Stokes parameters. The coherency den-
sity ρ = ρ0 + ρ is a paravector in the algebra for the space spanned by
{σ1,σ2,σ3} . This space, called Stokes space, is a 3-D Euclidean space
analogous to physical space. It is not physical space, but its geometric
algebra is isomorphic to APS, and it illustrates how Clifford algebras
can arise in physics for spaces other than physical space.

As defined for a single Φ, ρ is null (det ρ = ρρ̄ = 0) and can be written
ρ = ρ0 (1 + n) , where n, a unit vector in the direction of ρ, specifies the
type of polarization. In particular, for positive helicity light, n = σ3,
for negative helicity polarization n = −σ3, and for linear polarization
at an angle δ = φ/2 with respect to E0, n = σ1 cos φ + σ2 sin φ. Other
directions correspond to elliptical polarization.

5.2.2 Polarizers and Phase Shifters. The action of ideal
polarizers and phase shifters on the wave is modeled mathematically
by transformations on the Poincaré spinor Φ of the form Φ → TΦ. For
polarizers T that pass polarization of type n, T is the projector T = Pn =
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1
2 (1 + n) , which is proportional to the pure state of that polarization.
Projectors are idempotent (P2

n =Pn), just as we would expect for ideal
polarizers since a second application of Pn changes nothing further. The
polarizer represented by the complementary projector P̄n annihilates Pn:
P̄nPn = P−nPn = 0, and in general, opposite directions in Stokes space
correspond to orthogonal polarizations.

If the wave is split into orthogonal polarization components (±n) and
the two components are given a relative phase shift of α, the result is
equivalent to rotating ρ by α about n in Stokes subspace: T = Pneiα/2+
P̄ne−iα/2 = einα/2. Depending on n, this operator can represent both the
Faraday effect and the effect of a birefringent medium with polarization
types n and −n corresponding to the slow and fast axes, respectively.

5.2.3 Coherent Superpositions and Incoherent Mixtures.
A superposition of two waves of the same frequency is coherent because
their relative phase is fixed. Mathematically, one adds spinors in such
cases: Φ = Φ1 + Φ2 , where the subscripts refer to the two waves, not
to spinor components. Waves of different frequencies have a continually
changing relative phase, and when averaged over periods large relative
to their beat period, combine incoherently : ρ = ρ1 + ρ2. The degree
of polarization is given by the length of ρ relative to ρ0 and can vary
from 0 to 100%. Any transformation T of spinors, Φ → TΦ, transforms
the coherency density by ρ → TρT †, and transformations that do not
preserve the polarization can also be applied to ρ. [6]

6. Conclusions
The multiparavector structure of APS makes the algebra ideal for

modeling relativistic phenomena. It presents a covariant formulation
based on relative motion and orientation but provides a simple path to
the spatial vectors for any given observer as well as to the operators
that act on the vectors. The formulation is simple enough to be used
in introductory physics courses, and it holds the promise of becoming
a key factor in any curriculum revision designed to train students to
contribute significantly to the quantum age of the 21st century.

Since APS is isomorphic to complex quaternions, any calculation in
APS can be repeated with quaternions taken over the complex field.
However, the geometry is considerably clearer in APS. In its descriptive
and computational power for relativistic physics, APS seems as capable
as STA. However, STA has twice the size of APS in order to add the
non-observable structure of absolute frames to its formulation.
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