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ABSTRACT. Many unique records of archived motion pictures are in a fragile state
and contain many artifacts. Preservation of these pictures can be achieved by copying
them onto new digital media in compressed format, using, for instance, the MPEG
standard. Restoration of the old film sequences prior to renewed storage is often ben-
eficial both in terms of visual quality and in terms of coding efficiency. Restoring old
image sequences manually is a tedious and costly process and therefore the use of
an automated system for image restoration capable of dealing with common and less
common artifacts is desirable. This chapter presents the AURORA project, whose
goal it is to create such an automated system. Three algorithms developed within the
AURORA project, for dealing with noise, blotches and intensity flicker, are described
here. The success of these algorithms is demonstrated using both common measures
of performance and using a new objective measure based on coding efficiency.

1. Introduction

AURORA1 is an acronym forAUtomatedRestoration ofORiginal video and filmArchives.
AURORA consortium members that are actively involved in research include the BBC, Snell
& Wilcox, and Cambridge University in the U.K., Tampere University in Finland, INA in
France, and the Delft University of Technology in the Netherlands.

The goal of AURORA is to create new algorithms and real-time hardware for the restora-
tion of old video and film sequences. Many unique records of historic, artistic, and cultural
developments of every aspect of the 20th century are stored in huge stocks of archived moving
pictures and many of these historically significant items are in a fragile state. Preservation
of these pictures can be achieved by copying them onto new digital media in compressed
format, using, for instance, the MPEG standard. There are a number of reasons why old
motion pictures should be restored before they are stored on digital media. First, restoration
improves the visual quality of the film sequence and thereby the commercial value increases.
Second, restoration generally speaking leads to more efficient compression,i.e., to higher
quality at identical bit rates and conversely to lower bit rates at identical quality. The latter
is especially important in digital broadcasting and storage environments where the price of
broadcasting/storage is directly related to the number of bits being broadcast/stored.

The first part of the AURORA acronym,AUtomated, should be stressed because of the
absolutely huge amounts of old film and video that need to be processed and because of
economical constraints. Automated, real-time image restoration systems allow for bulk pro-
cessing of data and reduce the high cost of labor required for manual restoration. In order
to make bulk processing possible, the AURORA system takes digital image sequences as
its starting point instead of physical reels of film. Rather than having a system capable of

1This work was funded by the European Union under contract AC 072.
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handling a large number of film formats and systems that have been used in one period or
another over the last century, it is assumed that these films have been digitized by skilled
engineers who know best how to digitize the various types of film. Digital image sequences
are obtained by digitizing the output of the film-to-videotelecine. It must be kept in mind
that the earlier telecines have their limitations in terms of noise characteristics and resolution.
Sometimes a copy on video obtained from an earlier telecine is all that remains of a film.

Areas of interest within AURORA are typical artifacts in old film sequences such as
noise, line-scratches, blotches (dirt and sparkle), film unsteadiness, line jitter and intensity
flicker. In the following sections we focus on restoration techniques for a selection of these
artifacts. In Section 2 we discuss the general principles of noise reduction and we present
a new algorithm for this purpose. We devote Section 3 to the detection (and correction) of
blotches. In Section 4 we present a novel and very successful approach to correct intensity
flicker. In section 5 we investigate the improvement in quality of the restored sequences using
a new objective quality measure. Here it is also verified that image restoration and coding
efficiency are closely related. We conclude this chapter with a discussion in Section 6.

2. Noise reduction

Noise is a common problem in old film and video sequences and many methods for noise
reduction can be found in the literature [15], [16], [22], [2], [7], [10]. In this section we
consider image sequencesI(x; y; t) corrupted by noise�(x; y; t) that is signal independent,
white and additive (x; y indicate discrete spatial co-ordinates,t indicates the frame number).
The observed imagesY (x; y; t) are thus given by:

Y (x; y; t) = I(x; y; t) + �(x; y; t):(1)

For many practical purposes (1) is an adequate model. Using more accurate signal-
dependent models (e.g., for taking into account the gamma correction applied by televi-
sion cameras that makes the noise signal dependent and the signal dependent film grain
noise [7], [3]) often leads to little extra gain compared to the added complexity.

The goal of noise reduction is to obtain an estimate of the original signalÎ(x; y; t) given
the noisy observed signalY (x; y; t). A class of very successful nonlinear filters is based
on scale-space representations of the data to be filtered [22], [10]. Having representations
of the data with various levels of detail allows local and global signal characteristics to be
preserved better than purely spatial methods,e.g., Wiener filters. Noise reduction is achieved
by thresholdingor coring the transform coefficients computed at the various scales. Taking
the inverse transform of the adjusted coefficients gives the noise reduced result.

In the following sections we present ascale-spacebased noise reduction filter which
tries to get an optimal separation between signal and noise by including both directional and
temporal information into the transformation. In Section 2.1 we motivate the approach we
take to obtaining a scale-space representation of the image data. After presenting details of
this approach in Section 2.2, we extend the decomposition to 3D using wavelets in Section
2.3. We introduce the actual noise reduction operation in Section 2.4. In Section 2.5 we
present some experiments and results. We conclude the topic of noise reduction with a brief
discussion in Section 2.6.

2.1. Methods for obtaining scale-space representations of data

The DWT is a popular tool for obtaining scale-space representations of data. A problem
with this transform, however, is that, due to the aliasing caused by the critical subsampling, a
spatial shift of the input image may lead to totally different distribution of the signal energy
over the transform coefficients. Therefore, shifting the input image can lead to significantly
different filtering results. The DWT is not shift invariant. Shift invariance can be obtained
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by applying nondecimated DWT using bi-orthogonal wavelets [10]. However, this leads to a
massive increase in the number of transform coefficients.

Instead of using the DWT, we follow the approach of Simoncelli et al. [20], who proposed
a pyramid decomposition that is shift invariant. The shift invariance is accomplished avoiding
aliasing effects by ensuring that no components with frequencies larger than�=2 are present
before 2:1 subsampling. Furthermore, the Simoncelli pyramid has the advantage that it is
based on directionally sensitive filters. This means that the distribution of signal energy
over frequency bands depends on the orientation of structures within the image. This gives
improved filtering results for diagonal components in the image compared to a separable
DWT. Also, in the case that, say, 4 orientations are used, the noise energy is distributed over
4 orientations, whereas the energy of image structures such as straight lines is distributed over
1 or 2 orientations. This leads to better local separation between noise and signal.

The Simoncelli decomposition is significantly overcomplete, the number of transform
coefficients is much larger than the number of pixels in the original image. For example, a
five-level pyramid decomposition (four sets of high-pass coefficients and one set of low-pass
coefficients) with 4 orientations of anN�N image results in about9:3N2 coefficients. The
undecimated DWT gives10N2 for a four-level decomposition.

2.2. The Simoncelli pyramid

Figure 1 shows the 2D Simoncelli pyramid decomposition and reconstruction scheme. The
filtersLi, Hi andFj are the 2D low-pass, high-pass and directional (fan) filters, respectively.
Figure 2 represents a decomposition in the frequency domain. The filtersL0(!), H0(!)
andH1(!) ideally are linear phase, self inverting and satisfy the following constraints: the
aliasing in the low-frequency (subsampled) bands is minimized (eq. (2)), the overall system
has unity response (eq. (3)), and, all radial bands have a bandwidth of one octave (eq. (4)):

L1(!)! 0 for ! > �=2(2)

jLi(!)j
2 + jHi(!)j

2 = 1(3)

L0(!) = L1(2!):(4)

The 2D filters can be obtained from 1D linear phase FIR filters using the McClellan
transform [12]. Using (4), the two-dimensional filterL0(!) can be obtained fromL1(!). We
used a conjugate gradient algorithm to find the filtersH0(!) andH1(!) under the constraints
set by (3) [17].

For practical purposes the high-pass filtersH0(!) andH1(!) are directly combined with
the fan filtersF1(!) F2(!), F3(!), andF4(!). This can be done by multiplying the Fourier
transform of the filtersH0(!) andH1(!) with the angular termf(� � �0) in (5), where�m is
the center of orientation of the filter. The inverse Fourier transform of the product gives the
required 2D filter coefficients.

f(� � �m) =

8<
:

1 if j� � �mj < �=16
cos(j� � �mj) if �=16 � j� � �mj < 3�=16
0 otherwise

(5)



170 J. Biemond et al. / Restoration and Storage of Film and Video Archive Material

L1 ω( )

H1 ω( )

F1 ω( )

F2 ω( )

F3 ω( )

F4 ω( )

F1 ω( )

F2 ω( )

F3 ω( )

F4 ω( )

H1 ω( )

L1 ω( )1:22:1

L0 ω( )

H0 ω( )

F1 ω( )

F2 ω( )

F3 ω( )

F4 ω( )

F1 ω( )

F2 ω( )

F3 ω( )

F4 ω( )

H0 ω( )

L0 ω( )

IN OUT
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2.3. An extension to 3D using wavelets

The 2D decorrelating pyramid transform separates signal and noise. We now include motion
compensated temporal information to improve on this separation. If the signals are stationary
in a temporal direction, the motion compensated frames fromt � n; :::; t + m should all
be identical to framet , except for the noise term. The pyramid decomposition of these
images should also be identical, except for the noise term. If we view a set of coefficients at
corresponding scale-space locations in a temporal sense, we have a 1D DC signal plus noise.
These can be separated into a low-pass and a high-pass signal; we propose applying the DWT
to this effect.

Note that ideally speaking one would use a long filter to obtain good separation between
signal and noise in the spatio-temporal decomposition step. The inaccuracies of the motion
estimator and the fact that areas become occluded or uncovered form a limiting factor to the
length of the wavelet used. The inaccuracies of the motion estimator are also the reason why
we do not apply straightforward averaging in the temporal direction to obtain the low-pass
signal: we want to avoid blur.

The 3D spatial-temporal pyramid decomposition is given by the following steps:
1a Calculate the motion compensated images for imagest�n; :::; t+m (n;m depend on

the size of wavelet),
2a Calculate the Simoncelli pyramid decomposition for each (motion compensated) im-

age (Fig. 1),
3a Apply the DWT in the temporal direction to each set of coefficients at correspond-

ing scale-space locations, with the coefficient belonging to framet being the center
coefficient.

The reconstruction phase is as follows:
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FIGURE 3. Coring functions. (a) Soft thresholding. (b) Hard thresholding. (c)
Bayesian thresholding. (d) Piecewise linear approximation to Bayesian thresholding.
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FIGURE 4. Schematic representation of the 3D pyramid noise reduction system

4a Apply the inverse DWT to each set of wavelet coefficients, this leaves us with the
spatially decomposed frame att,

5a Apply the synthesis stage of the Simoncelli scheme (Fig. 1).

2.4. Noise reduction by coring

Coring or thresholding[10], [19] the transform domain coefficients by either soft or hard
thresholding are popular filtering operations. Alternatively, coring functions which are op-
timal in a mean-squared-error sense can be computed or approximated using a Bayesian
framework. Figure 3 shows these coring functions. Soft thresholding leads to a slight loss in
contrast of the reconstructed image. Hard thresholding introduces disturbing ringing artifacts
near edges.

The structure of the proposed decomposition/reconstruction algorithm offers several pos-
sibilities for applying coring by introducing the following steps (see Fig. 4):

2b For all spatially decomposed (motion compensated) frames, threshold all the spatial
transform coefficients (except for those in the DC band),

3b Threshold all the high-pass spatio-temporal coefficients,
4b Threshold the coefficients in all spatial frequency bands of the reconstructed framet

(except for those in the DC band).

Note that the spatio-temporal decomposition makes temporal filtering of the DC band
from the Simoncelli pyramid possible without introducing visible blur or other artifacts. 2D
scale-space noise reduction filters have no way of filtering the DC bands.

2.5. Experiments and results

For our experiments we used a three-level pyramid with four orientations. To significantly
reduce the computational load we omitted the filtersL0(!) andH0(!) , i.e., we omitted
everything outside the dashed box in Fig. 1. This yields5:3N2 transform coefficients for
anN�N image. As a result, the highest frequency bands cover a larger relative bandwidth
than the lower frequency bands.L1(!) was designed to have an attenuation of 40 dB at�=2.
A 6-tap bi-orthogonal Daubechies wavelet [1] was used for the temporal extension. For the
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(a)

(b)

FIGURE 5. (a) Noisy field from Plane sequence. (b) Corrected field.

sake of simplicity we applied soft-thresholding with values 1.0, 10.0 and 1.0 in steps 2b, 3b
and 4b respectively (see Section 2.4).

The test sequence (100 frames) of a plane flying over a landscape was processed. It
contains fine detail, sharp edges, uniform regions and significant motion. Eight levels of
white Gaussian noise were added to this scene, leading to an average PSNR of 25.2 dB.
The motion vectors from one field to the next were computed using a hierarchical block-
matcher with additional constraints on the smoothness of the motion vectors. Motion vectors
to and from fields further apart were obtained by vector tracing (adding the motion vectors of
consecutive fields).

Figure 5 shows a noisy field and a noise reduced field. Clearly, much noise has been re-
duced whilst edges have not been blurred. However, we do note a slight reduction in contrast
in some lightly textured regions. A considerable increase in PSNR of 5.2 dB results from this
new filter.

2.6. Discussion

Even though the proposed filter gives very good results, it is not a practical filter due to
its high complexity. The low-pass and high-pass filters used consisted of23 � 23 taps and
therefore, to ensure a reasonable processing time, the convolutions have to be performed in
the Fourier domain. Clearly, this filter is too expensive to be built inreal-timehardware.
However, its function is more to serve as a benchmark to see what amount of noise reduction
is attainable and to see how close the noise filters that are being implemented in hardware for
AURORA come to that optimum.
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3. Blotch detection

Blotches present a common type of artifact in old film sequences that manifests itself as dis-
turbing bright or dark spots caused by dirt and by the loss of the gelatin covering the film due
to aging effects and bad film quality. Characteristics of blotches are that they seldom appear
at the same spatial location in consecutive frames, they tend to be smooth (little texture), and
they usually have intensity values that are very different from the original contents they cover
(see,e.g., Fig. 9a). Films corrupted by blotches are often restored using a two-step approach.
In the first step blotches are detected and detection masks are generated that indicate for each
pixel whether or not it is part of a blotch. In the second step, corrupted pixels are corrected
by means of spatio-temporal interpolation [8], [9], [6], [14].

Blotch detectors are either object based or pixel based. Pixel based detectors determine
for each pixel whether or not it is part of a blotch independently from whether or not its
neighboring pixels are considered to be part of a blotch. Object based detectors exploit the
spatial coherence within blotches via,e.g., Markov random fields. So far, pixel based detec-
tors have shown to achieve similar detection results as object based detectors at a fraction of
the computational cost [8].

We present three post-processing operations that can be applied on the candidate blotches
output by a blotch detector to improve the quality of the detection masks. The key is that
we use a pixel based detector and that in the post-processing we consider blotches as objects.
This allows us to exploit the spatial coherency within blotches while maintaining low com-
plexity and low computational effort. The first post-processing operation detects and removes
possible false alarm by taking into account the probability that the detector wrongly detects
a blotch (an object) of a certain size due to noise. The second post-processing operation
finds missing pieces of blotches that would otherwise be only partially detected by applying
a technique called hysteresis thresholding [4]. The final post processing operation consists of
a constrained dilation operator that fills smallholesin and on edges of the candidate blotches.

Section 3.1 describes the blotch detector we will be using. Section 3.2 describes the
post-processing operations. Section 3.3 describes the results and concludes this topic.

3.1. The simplified ranked ordered difference (S-ROD) detector

Blotches are characterized by the fact that they seldom appear at the same location in a pair
of consecutive frames and that they have intensity values different from the original image
contents. Therefore, blotches can be detected by detecting temporal discontinuities in image
intensity. The additional use of motion compensation significantly reduces the number of
false alarms. The ROD detector [14] is based on these principles. We present asimplified
version of ROD, which we call S-ROD.

Let In(z) denote the intensity of a pixel at a spatial locationzT = (x; y) in framen.
Let pn;i(z) form a set of six reference pixels, ordered by magnitude, obtained from spatially
co-sited pixels and their vertical neighbors in motion compensated previous and next frames
(see Fig. 6). The output of S-ROD is then defined by:

dn(z) =

8<
:

min(pn;i(z))� In(z) if min(pn;i(z))� In(z) > 0
In(z)�max(pn;i(z)) if In(z)�max(pn;i(z)) > 0;
0 otherwise

(6)

and a blotch is detected when:

dn(z) > T1 with T1 � 0:(7)

What the S-ROD basically does compute the range of the reference intensities from mo-
tion compensated frames and it compares the pixel intensity under investigation to this range
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(Fig. 7). A blotch is detected if the intensity of the current pixel is not included in that range
and lies far enough outside that range. What is considered“far enough” is determined byT1.
If T1 is small many blotches will be detected correctly but many false alarms will occur. As
T1 becomes larger, fewer blotches are detected and the number of false alarms drops.

By means of areceiver operator characteristic(ROC) curve, which depicts the proba-
bility of false alarm vs. the probability of correct detection, the numerical performance of
a detector can be visualized graphically. Figure 8 shows the ROC curves obtained from a
test sequence using ROD, S-ROD and S-ROD with the post-processing proposed in the next
section. The test sequence, which was also used in [8], [14], is theWesternsequence (64
frames) to which artificial blotches have been added. Each artificial blotch had a fixed gray
value which was drawn uniformly between 0 and 255. We observe that the performance of
S-ROD is slightly below that of ROD. We also see that much is gained after applying the
post-processing operations we describe next.
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3.2. Improving the detection results by post-processing

We propose a number of post-processing operations in which the goal is to maximize the ra-
tio of correct detections to false alarms. The key to the post-processing operations is that the
candidate blotches are viewed not as individual pixels but as objects. Section 3.2.1 defines
what we consider to be an object. Section 3.2.2 presents the first post-processing technique
that detects and removes possible false alarms due to noise given a specific detector. Of-
ten blotches are detected only partially. Section 3.2.3 presents our second post-processing
technique that finds more complete blotches in those cases. Section 3.2.4 presents the third
post-processing technique, which is a constrained dilation technique that includes small holes
in the candidate blotches that are missed by the detector.

3.2.1. Object definition.We want to manipulate candidate blotches as objects rather than as
individual pixels. Because we are particularly interested in blotches it is reasonable to use
characteristics of blotches in the object definition. The characteristics we use are that blotches
are spatially coherent and that they tend to be smooth,i.e., that adjacent pixels have similar
intensities. We consider a pair of pixels to be similar if their difference is smaller than twice
the standard deviation of the noise. Other characteristics of blotches are taken into account
implicitly due to the fact that we are only interested in pixels flagged by the blotch detector.

Therefore, adjacent pixels that have similar intensities and that are flagged by the blotch
detector are considered to be part of the same candidate blotch. To differentiate between the
various candidate blotches a unique label is assigned to each candidate blotch (and to each
pixel that is part of that blotch).

3.2.2. Removing false alarms due to noise.High correct detection rates are achieved by set-
ting the blotch detector to a high degree of sensitivity. However, the detector is then not only
sensitive to blotches but also to noise and many false alarms result. This is undesirable be-
cause it increases the probability of introducing visible errors during the correction stage. To
reduce the influence of noise, we propose computing the probability that the detector gives
a specific response due to noise under the assumption that no blotches are present. This al-
lows us to compute the probability that a blotch of given size is wrongly detected. If that
probability exceeds a certain riskR, all candidate blotches of that size and with the same
corresponding detector response are removed from the detection mask.

We demonstrate this approach for the S-ROD detector. After labelling the candidate
blotches we compute the sizeN and the mean value of the detector outputdn(z) for each
blotch. We assume that in the absence of noiseIn(z) = pn;i(z) for at least onei, i.e., that no
false alarms occur in the absence of noise. We also assume that the noise isindependent and
identically distributed(i.i.d.). The probability that S-ROD, withT1 � 0 , generates a single
false alarm due to noise is then given by:

P [dn(z) > T1]
= P [In(z)�max(pn;i(z)) > T1; In(z)�max(pn;i(Z)) > 0]+
P [min(pn;i(z))� In(z) > T1; min(pn;i(z))� 0In(z) > 0]

= P [In(z)�max(pn;i(z)) > T1] + P [min(pn;i(z))� In(z) > T1]
= P [all In(z)� pn;i(z) > T1] + P [all pn;i(z)� In(z) > T1]
= P 6[In(z)� pn;i(z) > T1] + P 6[pn;i(z)� In(z) > T1]:

(8)

Because we operate in the digital domain, it is easy to compute the probability mass
functionP [dn(z) = X] once (8) has been determined,i.e., the probability that S-ROD gives
a specific responseX for a single pixel due to noise.

After the labeling procedure, a candidate blotch is an object with spatial supportS that
consists ofN pixels, and the mean value of the output of the blotch detector equalsdn(z) for
that object. LetH0 denote the hypothesis that this object is purely the result of false alarms
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FIGURE 9. (a) Blotched frame from test se-
quence. (b) Mask of artificial blotches. (c)
Initial detection mask using S-ROD with
T1 = 0. (d) Detection mask after removing
possible false alarms due to noise.

probability of 
false alarm

Remove 
blotches <

1 0.091921 5 pixels

2 0.060310 5 pixels

3 0.036622 4 pixels

4 0.020488 3 pixels

5 0.010353 3 pixels

6 0.004854 3 pixels

7 0.002095 2 pixels

8 0.000820 2 pixels

9 0.000301 2 pixels

10 0.000105 2 pixels

11 0.000028 2 pixels

dn z( )

Table 1. See text for explanation.

due to noise.P [H0] is then the probability that a collection ofN individual pixels are flagged
by the S-ROD independently of their location and of their neighbors. By approximation:

P [H0] = P [ 1
N

P
z2S dn(z) = dn(z); size = N jno blotch present]

� PN [dn(z) = dn(z)]
(9)

We now remove those candidate blotches for which the probability that they are solely
the result of noise exceeds a certain riskR:

P [H0] > R:(10)

The result of this approach is illustrated in Figure 9, which shows frame 8 of theWestern
sequence together with the artificial blotch mask and the detection masks before and after
post-processing. The initial detection mask was obtained using S-ROD where we choseT1 =
0. The noise was assumed to be i.i.d. Gaussian and the noise variance was estimated to be 9
using the method described in [11]. Table 1 shows the probability of a false alarm due to noise
and the sizes below which blotches are removed when the average detector response value
for that blotch equalsdn(z). These sizes were computed by setting the risk toR = 10�5.

In frame 8 84.8% of the blotches were detected correctly and 13.1% of the uncorrupted
pixels were mistakenly flagged as being part of a blotch before post-processing. After post-
processing 83.4% of the blotches were detected correctly and only 1.0% of the clean pixels
were mistakenly flagged as being part of a blotch. Clearly this is a great improvement.
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(a) Low sensitivity (b) High sensitivity (c) Combined result

FIGURE 10. Schematic overview of hysteresis thresholding. (a) Detection mask from
detector set to low sensitivity with partially detected blotches. (b) Detection mask
from detector set to high sensitivity with many false alarms. (c) Result after validation
(propagation): the partially detected blotches are completed

3.2.3. Completing partially detected blotches.We note that when the detector is set to low
detection rates, many blotches are not detected at all and other blotches are detected only par-
tially. We now want to make those blotches that are detected only partially more complete.
We achieve this by noting from Fig. 8 that asT1 is lowered the probability of false alarms de-
creases faster than the probability of correct detections. This means that detections resulting
from a blotch detector set to a low detection rate are more likely to be correct and can thus be
used to validate the detections from that detector when set to a high detection rate.

This can be implemented by applying hysteresis thresholding [4] (see Fig. 10). The first
stage computes and labels the set of candidate blotches using the operator settings of the
blotch detector (in the case of S-ROD this is the operator setting ofT1). Possible false alarms
due to noise are removed as described before. The second stage sets the blotch detector to
a very high detection rate (i.e., T1 = 0 for S-ROD) and again a set of candidate blotches is
computed and labeled. Candidate blotches from the second set can now be validated; they
are preserved if corresponding candidate blotches in the first set exist. The other candidate
blotches in the second set, which are more likely to have resulted from false alarms, are
discarded. Effectively we have preserved the candidate blotches detected using the operator
settings and we have made them more complete.

3.2.4. Constrained dilation for missing details.Even though a blotch detector may be very
refined, there is always a probability that it fails to detect elements of a blotch. This is
illustrated by Fig. 9 where it can be seen that, even though the S-ROD detector has been set
to its most sensitive setting, not all the blotches have been detected completely. In this final
post-processing step we refine the candidate blotches by removing small holes in and on the
edges of the candidate blotches.

We propose using a constrained dilation operation for filling in the holes. It applies the
following rule: if a pixel’s neighbor is flagged as being blotched and its intensity difference
with that neighbor is small (e.g., less than twice the standard deviation of the noise) then
that pixel should also be flagged as being part of that blotch. Because of the constraint
on the differences in intensity, the probability that uncorrupted pixels surrounding a blotch
will mistakenly become flagged as ”blotched” is reduced because blotches tend to have gray
values that are significantly different from their surroundings.

It is important not to apply too many iterations of this constrained dilation operation
because it is always possible that the contrast between a candidate blotch and its surroundings
is low. The result would be that the candidate blotch would grow completely out of its bounds
and many false alarms would occur. In practice, we found that applying two iterations leads
to good results.
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FIGURE 11. (a) Mask of artificial blotches. (b) Blotches detected using ROD (c)
Blotches detected using S-ROD with post-processing. (d) Blotched frame. (e) cor-
rected frame after ROD. (f) Corrected frame after S-ROD with post-processing. Note
the differences in the boxed regions.

3.3. Results and conclusions

We already observed in Figure 8 that S-ROD in combination with post-processing gives a
significant improvement over plain ROD. For example, the number of false alarms resulting
from S-ROD with post-processing is a factor 6 lower than that which results from ROD at a
correct detection rate of 85%.

Figure 11 shows the detection masks and corrected versions of frame 8 of the test se-
quence that result from ROD and S-ROD with post-processing. The ml3dex interpolation
method as described in [9], a three-dimensional multi-stage median filter, was used for inter-
polating the blotched data. ROD and S-ROD with post-processing were set to an overall false
alarm rate of 0.001 for the whole test sequence. Note the differences in the number of small
blotches and the differences in detection and correction results in the boxed regions.

In conclusion, the methodology described here can also be applied to other blotch de-
tectors. Alternatively, the rules and constraints posed by the post-processing could well be
defined implicitly in a new detector,e.g.based on Markov random fields. This would, how-
ever, significantly increase the complexity and computational effort.

4. Correction of intensity flicker

A common artifact in old black-and-white film sequences is intensity flicker. We define
intensity flicker as unnatural temporal fluctuations in perceived image intensity that do not
originate from the original scene. Intensity flicker has a great number of causes,e.g., aging
of film, dust, chemical processing, copying, aliasing, and, in the case of earlier film cameras,
variations in shutter time. Neither equalizing the intensity histograms nor equalizing the
mean frame values of consecutive frames, as suggested in [13], [18] give general solutions
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to the problem. These methods do not take changes in scene contents into account, and they
do not appreciate the fact that intensity flicker can be a spatially localized effect. We propose
equalizing local intensity means and variances in a temporal sense to reduce the undesirable
temporal fluctuations in image intensities.

In Section 4.1 we model the effects of intensity flicker, and we derive a solution to this
problem for stationary sequences. Here we also define a measure of reliability for the model
parameters. In section 4.2 we extend the applicability of our method to include nonstation-
ary sequences by incorporating motion. In the presence of intensity flicker, it is difficult to
compensate for motion of local objects in order to satisfy the requirement of stationarity. We
therefore describe a method for compensating global motion (camera pan) and a method for
detecting the remaining local object motion. The model parameters are interpolated where
local motion is detected. We show, in Section 4.3, the overall system of intensity-flicker
correction and discuss some practical aspects. Experiments and results form the topics of
Section 4.4. Finally, we conclude with a discussion in Section 4.5.

4.1. Estimating and correcting intensity flicker in stationary sequences

We develop a method for correcting intensity flicker that is robust to the wide range of causes
of this artifact. First, in Section 4.1.1 we model the effects of intensity flicker. We find
a solution to this problem that is optimal in a linear mean square error sense. In Section
4.1.2 we concentrate on how the model parameters can be estimated for stationary image
sequences, and we define a measure of reliability of those estimated parameters.

4.1.1. Estimating and correcting intensity flicker in stationary sequences.It is not practical
to find explicit physical models for each of the mechanisms mentioned that cause intensity
flicker. Instead, our model of the effects of this phenomenon is based on the observation that it
causes temporal fluctuations in local intensity mean and variance. Since noise is unavoidable
in the various phases of digital image formation, we also include a noise term in our model:

Y (x; y; t) = �(x; y; t) � I(x; y; t) + �(x; y; t) + �(x; y; t)(11)

Herex; y are discrete spatial coordinates andt indicates the frame number.Y (x; y; t)
andI(x; y; t) indicate the observed and original image intensities. Note that byI(x; y; t) we
do not necessarily mean the original scene intensities, but a signal that, prior to the intro-
duction of intensity flicker, may already have been distorted. The distortion could be due
to signal-dependent additive granular noise that is characteristic of film [3], [16], for exam-
ple. The multiplicative and additive intensity-flicker parameters are denoted by�(x; y; t)
and�(x; y; t). In the ideal case, when no intensity flicker is present,�(x; y; t) = 1 and
�(x; y; t) = 0 for all x; y; t. We assume that�(x; y; t) and�(x; y; t) are spatially smooth
functions.

The intensity-flicker-independent noise, denoted by�(x; y; t), models noise that has been
added to the signal after the introduction of intensity flicker. We assume that this noise term is
uncorrelated with the original image intensities. We also assume that�(x; y; t) is a zero-mean
signal with known variance. Examples are quantization noise and thermal noise originating
from electronic studio equipment (VCR, amplifiers, etc.).

To correct intensity flicker, we must estimate the original intensity for each pixel from
the observed intensities. We propose using the following linear estimator for estimating
I(x; y; t):

Î(x; y; t) = a(x; y; t) � Y (x; y; t) + b(x; y; t):(12)

If we define the error between the original image intensity and the estimated original
image intensity as:
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�(x; y; t) = I(x; y; t)� Î(x; y; t);(13)

then we can easily determine that, given�(x; y; t) and�(x; y; t), the optimal values for
a(x; y; t) andb(x; y; t) in a linear minimum mean square error(LMMSE) sense are given by:

a(x; y; t) =
var[Y (x; y; t)]� var[�(x; y; t)]

var[Y (x; y; t)]
�

1

�(x; y; t)
(14)

b(x; y; t) = �
�(x; y; t)

�(x; y; t)
+

var[�(x; y; t)]

var[Y (x; y; t)]
�
E[Y (x; y; t)]

�(x; y; t)
(15)

whereE[] stands for the expectation operator andvar[] indicates the variance. It is inter-
esting to note that from equations (12), (14), and (15) it follows that, in the absence of noise,
a(x; y; t) = 1=�(x; y; t), b(x; y; t) = ��(x; y; t)=�(x; y; t) and thatÎ(x; y; t) = I(x; y; t).
That is to say, the estimated intensities are exactly equal to the original intensities. In
the extreme case that the observed signal variance equals the noise variance, we find that
a(x; y; t) = 0 and Î(x; y; t) = b(x; y; t) = E[I(x; y; t)]; the estimated intensities equal the
expected values of the original intensities.

4.1.2. Estimating intensity-flicker parameters in stationary scenes.In the previous section
we derived a LMMSE solution to intensity flicker, assuming that the intensity-flicker param-
eters�(x; y; t) and�(x; y; t) are known. This is not the case in most practical situations, and
these parameters will have to be estimated from the observed data. In this section we deter-
mine how the intensity-flicker parameters can be estimated from stationary image sequences.
We already assumed that�(x; y; t) and�(x; y; t) are spatially smooth functions. For practical
purposes we now also assume that the intensity-flicker parameters are constant locally:

8<
:

�(x; y; t) = �m;n(t)
forx; y 2 
m;n;

�(x; y; t) = �m;n(t)
(16)

where
m;n indicates a small image region. The image regions
m;n can, in principle,
have any shape, but they are rectangular blocks in practice, andm;n indicate their horizontal
and vertical spatial locations. The�m;n(t) and�m;n(t) corresponding to
m;n are considered
as frame-dependent matrix entries atm;n. The sizeM�N of the matrix depends on the total
number of blocks in the horizontal and vertical directions.

Keeping in mind the assumption that the zero-mean noise�(x; y; t) is signal independent,
we compute from (11) the expected value and variance ofY (x; y; t) in a spatial sense for
x; y 2 
m;n:

E[Y (x; y; t)] = �m;n(t) � E[I(x; y; t)] + �m;n(t)m(17)

var[Y (x; y; t)] = �2
m;n(t) � var[I(x; y; t)] + var[�(x; y; t)]:(18)

Rewriting (17) and (18) gives forx; y 2 
m;n:

�m;n(t) = E[Y (x; y; t)]� �m;n(t) � E[I(x; y; t)];(19)
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�m;n(t) =

s
var[Y (x; y; t)]� var[�(x; y; t)]

var[I(x; y; t)]
:(20)

We now wish to solve (19) and (20) in a practical situation. The means and variances
of Y (x; yt) can be estimated directly from the regions
m;n from the observed data. We
assumed the noise variance to be known. What remains to be estimated are the expected
values and variances ofI(x; y; t). Forx; y 2 
m;n, these estimates can be obtained by using
the frame corrected previously as a reference:

E[I(x; y; t)] = E[Î(x; y; t� 1)];(21)

var[I(x; y; t)] = var[Î(x; y; t� 1)]:(22)

Thus, forx; y 2 
m;n, the estimated intensity-flicker parameters are given by:

�̂m;n(t) = E[Y (x; y; t)]� �̂m;n(t) � E[Î(x; y; t� 1)];(23)

�̂m;n(t) =

s
var[Y (x; y; t)]� var[�(x; y; t)]

var[Î(x; y; t� 1)]
:(24)

We need a measure of reliability for̂�m;n(t) and�̂m;n(t), to be able to avoid introducing
significant errors in the corrected sequence. There are some cases in which the�̂m;n(t) and
�̂m;n(t) are not very reliable. The first case is that of uniform image intensities. For any
original image intensity in a uniform region, there are an infinite number of combinations of
�m;n(t) and�m;n(t) that lead to the observed intensity. Another case in which�̂m;n(t) and
�̂m;n(t) are potentially unreliable is caused by the fact that (21) and (22) discard the noise in
I(x; y; t) originating from�(x; y; t). Considerable errors result in regions
m;n in which the
signal variance is small compared to the noise variance (low signal-to-noise ratio). It is clear
from these examples that the accuracy of the estimated parameters decreases with decreasing
signal variances. Therefore we define the following measure of reliability, forx; y 2 
m;n:

Wm;n;t =

(
0 if var[Y (x; y; t)] < Tnq

var[Y (x;y;t)]�Tn
Tn

otherwise
(25)

whereTn is a threshold depending on the variance of�(x; y; t). Large values forWm;n;t

indicate reliable estimates, small values indicate unreliable estimates.

4.2. Incorporating motion

We have modeled the effects of intensity flicker, and we derived a solution for stationary
sequences. Real sequences, of course, are seldom stationary. Measures will have to be taken
to avoid estimates of�(x; y; t) and�(x; y; t) that are incorrect due to motion. Compensating
motion betweenY (x; y; t) andÎ(x; y; t� 1) helps satisfy the assumption of stationarity. This
requires motion estimation.

Robust methods for estimating global motion (camera pan) that are relatively insensitive
to fluctuations in image intensities exist. Unfortunately, the presence of intensity flicker
hampers the estimation of local motion (motion in small image regions) because local motion
estimators usually have aconstant luminanceconstraint,i.e., pel-recursive methods and all
motion estimators that make use of block matching in one stage or another [21]. Even if
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motion can be well compensated, a strategy is required for correcting flicker in previously
occluded regions that have become uncovered.

For these reasons, our strategy for estimating intensity-flicker parameters in nonstationary
scenes is based on local motion detection. First, we register a pair of frames to compensate for
global motion (Section 4.2.1). Then we estimate the intensity-flicker parameters as outlined
in Section 4.1.2. Using these parameters, we detect the remaining local motions (Section
4.2.2). Finally, we interpolate the missing parameters of the nonstationary regions (Section
4.2.3).

4.2.1. Estimating global motion with phase correlation.In sequences with camera pan, ap-
plying global-motion compensation only helps satisfy the requirement of stationarity if the
global motion vectors (one vector to each frame) are accurate:i.e., if the global motion esti-
mator is robust against intensity flicker. A global motion estimator that suits our purpose is
the phase correlation method [21] applied to high-pass-filtered versions of the images. Phase
correlation determines motion based on phase shifts in the Fourier domain. Because it uses
Fourier coefficients normalized by their magnitude, this method is relatively insensitive to
fluctuations in image intensity. As we assumed that the amount of intensity flicker varies
smoothly in a spatial sense, the direction of changes in intensity over edges and textured
regions is preserved in the presence of intensity flicker. This means that the phases of the
higher-frequency components will not be affected by intensity flicker. Local mean intensities
can show considerable variations from frame to frame. This gives rise to random variations in
the phase of the low-frequency components. These random variations are disturbing factors
in the motion estimation process that can be avoided by removing the low-pass frequency
components from the input images.

Phase correlation determines phase shift in the Fourier domain as follows:

Ct;t�1(!1; !2) =
St(!1; !2)S

�

t�1(!1; !2)

kSt(!1; !2)S�t�1(!1; !2)k
(26)

whereSt(!1; !2) stands for the 2D Fourier transform ofY (x; y; t) and� denotes the com-
plex conjugate. IfY (x; y; t) andY (x; y; t � 1) are spatially shifted but otherwise identical
images, the inverse transform of (26) leads to a delta pulse in the 2D correlation function. Its
location yields the global displacement vector(dx; dy)

T . We can now compensate for global
motion in estimating the model parameters by replacing (23) and (24) with:

�̂m;n(t) = E[Y (x; y; t)]� �̂m;n(t) � E[Î(x� dx; y � dy; t� 1)];(27)

�̂m;n(t) =

s
var[Y (x; y; t)]� var[�(x; y; t)]

var[Î(x� dx; y � dy; t� 1)]
:(28)

4.2.2. Detecting remaining local motion.It is important to detect the remaining local mo-
tion after we have compensated for global motion. Local motion causes changes in image
statistics that are not due to intensity flicker. This leads to incorrect estimates of�(x; y; t)
and�(x; y; t): i.e., to visible artifacts in the corrected image sequence.

We have developed a robust motion detection system that relies on the current frame only.
The underlying assumption of this method is that motion should only be detected if visible
artifacts would otherwise be introduced. First, the observed image is subdivided into blocks

m;n that overlap their neighbors both horizontally and vertically (The overlapping boundary
regions form sets of reference intensities. The intensity-flicker parameters are estimated for
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FIGURE 12. (a) Set of original measurements that have variable accuracy, the missing
measurements have been set to 1. (b) Smoothed and interpolated parameters using
SOR.

each block by (27) and (28). These parameters are used with (12), (14), and (15) for cor-
recting the intensities in the boundary regions. Then, for each pair of overlapping blocks, the
common pixels that are assigned significantly different values are counted. Corrected pixels
are considered to be significantly different when their absolute difference exceeds a thresh-
old Td. Finally, motion is flagged if the number of significantly different pixels exceeds a
constantDmax , which depends on the number of pixels compared.

4.2.3. Interpolation of missing parameters using successive overrelaxation (SOR).Due to
noise and local motion, the estimated intensity-flicker parameters are unreliable in some
cases. We refer to these parameters asmissing. The other parameters are referred to asknown.
We want to find estimates of themissingparameters by means of interpolation. We also want
to smooth theknownparameters. The interpolation and smoothing functions should meet the
following requirements. First, the system of intensity-flicker correction should switch itself
off when the correctness of the interpolated values is less certain. This means that the interpo-
lator should incorporate biases for�̂m;n(t) and�̂m;n(t) towards unity and zero, respectively,
that grow as the smallest distance to a region withknownparameters becomes larger. Second,
the reliability of theknownparameters should be taken into account,i.e., the weightsWm;n;t

defined in (eq. 25).
An interpolation method that meets our requirements is SOR, which is a well-known

iterative method based on repeated low-pass filtering [17]. Figure 12 shows an example of
this method.

4.3. Practical issues

Figure 13 shows the overall structure of the system of intensity-flicker correction. We have
added some operations to this figure that we have not mentioned before and that improve the
system’s behavior. First, the current input and the previous system output (with global motion
compensation) are low-pass filtered with a5�5 Gaussian kernel. Prefiltering suppresses the
influence of high-frequency noise and the effects of small motion. Then, local means�
and variances�2 are computed to be used for estimating the intensity-flicker parameters.
These and the current input are used to detect local motions. Then, the missing parameters
are interpolated and the known parameters are smoothed. Bilinear interpolation is used for
upsampling the estimated parameters to full spatial resolution. This avoids the introduction
of blocking artifacts in the correction stage that follows.
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FIGURE 13. Global structure of intensity-flicker correction system

To avoid possible drift due to error accumulation (resulting from the need to approxi-
mate the expectation operator and from model mismatches), we bias the corrected intensities
towards the contents of the current frame. Equation (12) is therefore replaced by:

Î(x; y; t) = � � (�(x; y; t) � Y (x; y; t) + b(x; y; t) + (1� �) � Y (x; y; t)(29)

where� is the forgetting factor. A practical value for� is 0.85.

4.4. Experiments and results

We applied the system of intensity-flicker correction both to sequences containing artificially
added intensity flicker and to sequences with real (non synthetic) intensity flicker. The first
set of experiments takes place in a controlled environment and allows us to evaluate the cor-
rection system under extreme conditions. The second set of experiments verifies the practical
effectiveness of our system and forms a verification of the underlying assumptions of our
approach.

If our algorithm functions well and the image content does not change significantly, then
the equalized frame means and variances, in a temporal sense, should have a low variance.
Indeed, the converse need not be true, but visual inspection helps us to verify the results.
Therefore, we propose to use the decreases in variation in frame means and in frame variances
to measure the effectiveness of our system.

4.4.1. Experiment on artificial intensity flicker.
For our first experiment we used the Mobile sequence (40 frames) which contains mov-

ing objects and camera panning (0.8 pixels/frame). The sequence was degraded in a manner
that simulates noise and intensity flicker as one can expect to find in a practical situation.
First, we added film-grain noise to the original sequence. This noise was generated by the
method mentioned in [16] with a variance of 33. Then we added artificial intensity flicker.
The intensity-flicker parameters were artificially created from second-order 2D polynomial
surfaces. The coefficients for the surfaces were drawn from the normal distributionN(0; 0:1)
(fromN(1; 0:1)) for the zero-th order (DC) term) to generate the�(x; y; t) and fromN(0; 10)
to generate the�(x; y; t). Visually speaking, this leads to severe amounts of intensity flicker.
Finally, we simulated thermal noise introduced by, for instance, atelecineor VCR. For this
purpose we added zero-mean signal-independent white Gaussian noise with a variance of 20.
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FIGURE 14. Top: frames 16, 17 and 18 of Mobile sequence with synthetic intensity-
flicker. Bottom: corrected frames
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FIGURE 15. Means (left) and variances (right) of original Mobile sequence, Mobile
sequence degraded with artificial intensity-flicker and noise, and corrected Mobile
sequence.

Global motion was compensated for during the sequence correction.

Figure 14 shows some frames from the degraded and the corrected sequence. Figure 15
shows the frame means and variances of the original, degraded and corrected test sequence.
From these graphs we note that the variation in mean and in variance has been significantly
reduced. Visual inspection confirms that the amount of intensity flicker has been reduced
significantly.

4.4.2. Experiment on real intensity flicker.For our second experiment we used a sequence,
which we callTunnel, that originates from the film archives of INA. Tunnel is 226 frames
long and it consists of a man entering the scene through a tunnel. There is some camera
unsteadiness during the first 120 frames, then the camera pans to the right and up. There
is film-grain noise and considerable intensity flicker in this sequence. We used the method
described in [11] to estimate the total noise variance, which was 8.9. Global motion compen-
sation was applied during the correction. Figure 16 shows three frames from this sequence,
original and corrected. Figure 17 shows that the fluctuation in frame means and variances
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FIGURE 16. Top: frames 13, 14 and 15 of the Tunnel sequence. Bottom: corrected frames

Degraded 
Corrected

0 20 40 60 80 100 120 140 160 180 200
60

62

64

66

68

70

72

74

76

78

80

FRAME

IN
T

E
N

S
IT

Y
 M

E
A

N

Degraded 
Corrected

0 20 40 60 80 100 120 140 160 180 200
800

900

1000

1100

1200

1300

1400

1500

1600

FRAME

IN
T

E
N

S
IT

Y
 V

A
R

IA
N

C
E

FIGURE 17. Means (left) and variances (right) of degraded and corrected Tunnel sequence.

have significantly been reduced. Visual inspection shows that the intensity flicker has been
reduced significantly without introducing visible new artifacts.

4.5. Conclusions

We introduced a system for correcting intensity flicker that performs well on artificially and
naturally degraded sequences. In broadcasting and in film restoration environments, real-
time implementation of our system is required. From an implementation point of view, the
required computations are simple and can easily be performed by hardware.

5. Objective evaluation of the improvement in quality of restored image sequences

Once an integrated image restoration system that is capable of simultaneously correcting
multiple artifacts has been designed, as the one in AURORA, one wants to know how effective
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the system is, how well it does its job. Because the goal of restoration is to improve the
visual (and audio) quality of degraded film sequences, the appropriate evaluation method is
by subjective evaluation. However, subjective evaluation is time consuming, expensive, and
does not allow large amounts of information to be evaluated due to practical constraints. This
means that some objective measure of quality must be defined.

In the previous sections we proposed three algorithms for image restoration and we used
three different measures of performance. Though these measures give good objective indi-
cations of the performance of the individual restoration processes, they do not directly give
a measure of quality of the overall result. In fact, some of the measures used require infor-
mation that is not available in a practical situation, such as the original noise-free images and
the real (not estimated) blotch masks.

In the next section, Section 5.1, we propose an objective measure for the improvement in
image quality based on coding efficiency. Then in Section 5.2 we apply this measure to the
experimental results from the previous sections. We conclude with a discussion in Section
5.3.

5.1. An Objective Measure of Improvement in image Quality (OMIQ)

It should be noted that, as no original unimpaired reference sequences are available, any
measure for the quality of a restored sequence can be at most a relative measure. In order to
come to an objective relative measure we make the following two assumptions:

1 Image restoration improves the objective quality by removing artifacts,
2 Removing artifacts increases the coding efficiency.

The second assumption is likely to be true for artifacts such as noise, blotches and in-
tensity flicker because removing these reduces the magnitude of the prediction errors both
in a temporal and a spatial sense. Having smaller prediction errors means that less bits are
required to obtain the same quality and, conversely, that higher quality can be obtained at the
identical bit rate. In [5] there is evidence that image stabilization also increases the coding
efficiency. Note that there are some artifacts for which the second assumption is not true,e.g.,
deblurred images require more bits for coding than the out of focus originals. For that reason
we exclude unsharpness artifacts from the discussion.

We now define a measure of quality improvement�Q as the difference between the
coding efficiency of the restored image sequence and the coding efficiency of the impaired
sequence:

�Q = E(corrected)� E(impaired):(30)
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The unit of the coding efficiency function�Q can be eitherbits or dB. Figure 18 shows
the scheme that allows us to measure coding efficiency when dB is taken as the unit of effi-
ciency. First, the restored image sequence is encoded for a constant bitrate. ThenE(corrected)
is given by the PSNR computed between the input and decoded output. Next, the impaired
image sequence is encoded at the same bitrate andE(impaired) is given by the PSNR com-
puted between the input and decoded output.�Q can now be computed and its interpretation,
in a digital broadcasting or storage environment, is that of the lower bound on the improve-
ment in image quality as observed by the (home) viewer. It is a lower bound because, accord-
ing to assumption 1, the quality of the corrected sequence is higher than that of the impaired
original, but we do not how much higher. It measures animprovementbecause, according to
assumption 2, the coding error is smaller and thus the visual quality of the decoded sequence
is higher.

When we usebit as the unit of coding efficiency, we set the coder’s bitrate so that the
PSNR between coded/decoded corrected sequences equals the PSNR between coded/decoded
impaired sequences.E(corrected) andE(impaired) are given by the sizes in bits of the
compressed sequence. The interpretation of�Q , which is negative in this case, is that of
how many bits of irrelevant information were removed by the restoration process.

5.2. Objective evaluation of the experimental results

We applied OMIQ to the impaired and corrected sequences from the previous sections. We
used the standard TM5 MPEG2 encoder. Initially we set the bitrate to 5 Mb/s for the Plane,
Mobile and Tunnel sequences, which all have a frame size of720�576 pixels. Because the
frame size of the Western sequence is smaller (256�256 pixels) we selected a lower bitrate for
this sequence, namely 0.8 Mb/s. Figure 19 shows the PSNR between the input sequences and
the coded/decoded results. From these graphs it is clear that the coding errors for corrected
sequences are smaller than those for the original impaired sequences. This is in accordance
with assumption 2 in the previous section.

Table 2 shows the mean of the PSNR of the coded sequences and the objective improve-
ment in image quality in dB. These numbers confirm that image restoration does indeed lead
to a higher quality of the coded sequence at identical bitrates for the artifacts under consid-
eration. The gains achieved by noise reduction are especially noteworthy. Table 2 also gives
the objective improvement in image quality in bits. These numbers were obtained by coding
the impaired sequences at higher bit rates than before such that the PSNR of coded/decoded
impaired sequences equals the PSNR of coded/decoded corrected sequences (at 5 Mb/s and
0.8 Mb/s respectively). We see that applying restoration can lead to great savings, ranging
from 30 to 270 percent in bits, whilst maintaining the same coding quality.

5.3. Discussion

A question is how well this objective measure corresponds to subjective evaluation. We stated
that OMIQ gives a lower bound on the improvement in image quality as observed by the
(home) viewer. This, however, does not mean that the viewer experiences this improvement
in quality as such. And, in fact, he or she does not. The reason is that it is difficult for an
observer to grade the improvement in image quality in terms of dB or bits. It is natural to
say, for instance, that removing intensity flicker, noise and blotches has increased the visual
quality, but it is difficult to assign a figure of merit to this increase.

The conclusion, therefore, must be that OMIQ indicates what savings can be achieved
in terms of bandwidth and storage capacity by applying image restoration prior to digital
broadcast and storage. One can assume (for the artifacts under consideration) that when
taking advantage of these savings the visual quality of coded/decoded corrected sequences
is at least equal, but probably better, than that of coded/decoded impaired sequences. The
achievable savings are a measure of the overall performance of the restoration system.
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FIGURE 19. PSNR of sequences after MPEG2 encoding. (a) Impaired (noise)
and corrected Plane sequence. (b) Impaired (blotches) and corrected Western se-
quence. (c) Impaired (intensity-flicker) and corrected Mobile sequence. (d) Impaired
(intensity-flicker) and corrected Tunnel sequence.

SEQUENCE IMPAIRMENT
MEAN

PSNR (dB)
IMPAIRED

MEAN
PSNR (dB)

CORRECTED
%

Plane Noise 25.2 30.4 5.2 -13.5 270

Western Blotches 34.6 36.1 1.5 -0.35 44

Mobile Flicker 28.7 29.9 1.2 -2.7 54

Tunnel Flicker 36.4 36.9 0.5 -1.5 30

∆Q (dB) ∆Q  (Mbit)

Table 2. Sequence mean in PSNR between input and coded/decoded output at 5
Mbit/s. Also given is the improvement in image quality in dB and in bits. he last
column gives the relative increase in the number of bits. See text for explanation.

6. Discussion

Applying image restoration prior to storing or broadcasting an image sequence in a com-
pressed format can lead to significant savings in the number of bits required for coding.
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This is important to note in an era in which broadcasters are transforming their broadcasts
from analog to digital. Due to compression and digital broadcasting, the number of channels
available to the home viewer will increase dramatically. However, these channels require
programming. Nowadays, production costs for new programming are tremendous. An alter-
native to making new programming is recycling the many films, soaps and quiz shows that
have been made over the last 50 or 60 years. This alternative can only be viable if the vi-
sual and audio quality meets the standards expected by the modern viewer and if the costs
for broadcasting old films do not exceed the costs for broadcasting contemporary films. We
suggest that image restoration can fulfill both of these requirements.

The Plane sequence was made available by courtesy of the BBC. The Western sequence
was made available by courtesy of Dr. A.C. Kokaram of the University of Cambridge. The
Tunnel sequence was made available by courtesy of INA.
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[16] M.K. Özkan, M.I. Sezan, and M. Tekalp. Adaptive motion compensated filtering of noisy image
sequences.IEEE Trans. on Circuits and Systems for Video Technology, 3(4), 1993.

[17] Press, Teukolsky, Vetterling, and Flannery.Numerical Recipes in C. Cambridge University Press,
2nd edition, 1992.

[18] P. Richardson and D. Suter. Restoration of historic film for digital compression: A case study. In
Proc. of ICIP-95, volume 2, pages 49–52. ICIP95, 1995.

[19] E.P. Simoncelli and E.H. Adelson. Noise removal via bayesian wavelet coring. InProc. of ICIP-
96, volume 1, pages 379–372. ICIP96, 1996.

[20] E.P. Simoncelli, W.T. Freeman, E.H. Adelson, and D.J. Heeger. Shiftable multiscale transforms.
IEEE Trans. on Information Theory, 38(2):587–607, 1992.

[21] A. M. Tekalp.Digital Video Processing. Prentice Hall, 1995.



J. Biemond et al. / Restoration and Storage of Film and Video Archive Material 191

[22] N. Weyrich and G. T. Warhola. Wavelet shrinkage and generalized cross validation for image
denoising.IEEE Trans. on Image Processing, 7(1):82–90, 1998.



192 M. Covell et al. / Modification of Audible and Visual Speech


